用于加速骨软骨缺损修复的双层 MOF 水凝胶三维打印原位生长。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Kaiqi Qin, Xinyue Huang, Shengfeng Wang, Jiachen Liang, Zengjie Fan
{"title":"用于加速骨软骨缺损修复的双层 MOF 水凝胶三维打印原位生长。","authors":"Kaiqi Qin, Xinyue Huang, Shengfeng Wang, Jiachen Liang, Zengjie Fan","doi":"10.1002/adhm.202403840","DOIUrl":null,"url":null,"abstract":"<p><p>Repairing osteochondral (OC) defect presents a significant challenge due to the intricate structural requirements and the unpredictable differentiation pathways of bone marrow mesenchymal stem cells (BMSCs). To address this challenge, a novel biomimetic OC hydrogel scaffold is developed that features a structure of soft and hard components. This scaffold incorporates bilayer metal-organic frameworks (MOFs), specifically ZIF-67 in the upper layer and ZIF-8 in the lower layer, achieved through an in situ printing process. This configuration enables the spatial and temporal modulation of BMSC differentiation by controlling the release of Co<sup>2</sup>⁺ and Zn<sup>2</sup>⁺. The results demonstrate that the bilayer MOF hydrogels significantly outperform hydrogels that either lack MOFs or contain a single type of MOF in enhancing repair outcomes in rabbit models of knee OC defects. The improved regenerative efficacy is attributed to the distinct chondrogenic and osteogenic differentiation cues provided by the bilayer MOFs, effectively guiding BMSCs toward enhanced tissue regeneration. This customizable biomimetic OC hydrogel scaffold not only opens new avenues for innovative therapeutic strategies but also holds great promise for widespread clinical applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403840"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Printed In Situ Growth of Bilayer MOF Hydrogels for Accelerated Osteochondral Defect Repair.\",\"authors\":\"Kaiqi Qin, Xinyue Huang, Shengfeng Wang, Jiachen Liang, Zengjie Fan\",\"doi\":\"10.1002/adhm.202403840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Repairing osteochondral (OC) defect presents a significant challenge due to the intricate structural requirements and the unpredictable differentiation pathways of bone marrow mesenchymal stem cells (BMSCs). To address this challenge, a novel biomimetic OC hydrogel scaffold is developed that features a structure of soft and hard components. This scaffold incorporates bilayer metal-organic frameworks (MOFs), specifically ZIF-67 in the upper layer and ZIF-8 in the lower layer, achieved through an in situ printing process. This configuration enables the spatial and temporal modulation of BMSC differentiation by controlling the release of Co<sup>2</sup>⁺ and Zn<sup>2</sup>⁺. The results demonstrate that the bilayer MOF hydrogels significantly outperform hydrogels that either lack MOFs or contain a single type of MOF in enhancing repair outcomes in rabbit models of knee OC defects. The improved regenerative efficacy is attributed to the distinct chondrogenic and osteogenic differentiation cues provided by the bilayer MOFs, effectively guiding BMSCs toward enhanced tissue regeneration. This customizable biomimetic OC hydrogel scaffold not only opens new avenues for innovative therapeutic strategies but also holds great promise for widespread clinical applications.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403840\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403840\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403840","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于骨髓间充质干细胞(BMSCs)具有复杂的结构要求和不可预测的分化途径,修复骨软骨(OC)缺损是一项重大挑战。为应对这一挑战,我们开发了一种新型仿生物 OC 水凝胶支架,其特点是具有软硬两种成分的结构。这种支架结合了双层金属有机框架(MOF),特别是上层的 ZIF-67 和下层的 ZIF-8,是通过原位打印工艺实现的。这种配置通过控制 Co2⁺和 Zn2⁺的释放,实现了对 BMSC 分化的空间和时间调控。研究结果表明,双层 MOF 水凝胶在提高兔子膝关节 OC 损伤模型的修复效果方面明显优于缺乏 MOF 或只含有单一 MOF 的水凝胶。再生疗效的提高归功于双层 MOF 提供的不同软骨源和成骨分化线索,有效引导 BMSCs 促进组织再生。这种可定制的生物仿生 OC 水凝胶支架不仅为创新治疗策略开辟了新途径,而且有望广泛应用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-Printed In Situ Growth of Bilayer MOF Hydrogels for Accelerated Osteochondral Defect Repair.

Repairing osteochondral (OC) defect presents a significant challenge due to the intricate structural requirements and the unpredictable differentiation pathways of bone marrow mesenchymal stem cells (BMSCs). To address this challenge, a novel biomimetic OC hydrogel scaffold is developed that features a structure of soft and hard components. This scaffold incorporates bilayer metal-organic frameworks (MOFs), specifically ZIF-67 in the upper layer and ZIF-8 in the lower layer, achieved through an in situ printing process. This configuration enables the spatial and temporal modulation of BMSC differentiation by controlling the release of Co2⁺ and Zn2⁺. The results demonstrate that the bilayer MOF hydrogels significantly outperform hydrogels that either lack MOFs or contain a single type of MOF in enhancing repair outcomes in rabbit models of knee OC defects. The improved regenerative efficacy is attributed to the distinct chondrogenic and osteogenic differentiation cues provided by the bilayer MOFs, effectively guiding BMSCs toward enhanced tissue regeneration. This customizable biomimetic OC hydrogel scaffold not only opens new avenues for innovative therapeutic strategies but also holds great promise for widespread clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信