利用 13C 和 19F 标记阐明两性霉素 B 离子通道结构的核磁共振和分子模拟研究。

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC
Yuichi Umegawa, Hiroshi Tsuchikawa, Wataru Shinoda, Michio Murata
{"title":"利用 13C 和 19F 标记阐明两性霉素 B 离子通道结构的核磁共振和分子模拟研究。","authors":"Yuichi Umegawa, Hiroshi Tsuchikawa, Wataru Shinoda, Michio Murata","doi":"10.1039/d4ob01468e","DOIUrl":null,"url":null,"abstract":"<p><p>Amphotericin B (AmB) has been clinically used for serious fungal infections for over 60 years. The drug is characterized by its specific recognition of ergosterol (Erg) in the fungal cell membrane. AmB and Erg form an ion-channel assembly, which is thought to play a major role in the antibiotic activity of AmB. The precise structure of the ion channel in fungal membranes still remains unelucidated. Recently, the structure of an AmB assembly formed in artificial lipid bilayers was determined using solid-state NMR and molecular dynamics simulations. The structure elucidation was made possible by using <sup>13</sup>C- and <sup>19</sup>F-labelled AmBs, which were efficiently synthesized using strategies and methods established in previous studies. This review focuses on the structure of the AmB ion channel, which accounts for the antibiotic activity. Additionally, the chemical syntheses of isotope-labelled AmB and Erg used for the structural studies are also reviewed. Solid-state NMR spectra of the labelled AmBs were recorded to measure the distances between labelled sites in the AmB-Erg assembly in lipid bilayers, revealing that the ion channel consisting of seven molecules of AmB spans the bilayer with a single molecule length. Extensive molecular dynamics simulations showed that the conductance of this AmB channel is comparable with those by single-channel recording. The simulations also demonstrated that Erg stabilizes the ion-channel assemblies more efficiently than human cholesterol. The atomic-level structure of the AmB channel in the artificial bilayer will help us to understand the mechanisms of the pharmacological actions and adverse effects of AmB.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMR and molecular simulation studies on the structure elucidation of the amphotericin B ion channel using <sup>13</sup>C and <sup>19</sup>F labelling.\",\"authors\":\"Yuichi Umegawa, Hiroshi Tsuchikawa, Wataru Shinoda, Michio Murata\",\"doi\":\"10.1039/d4ob01468e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amphotericin B (AmB) has been clinically used for serious fungal infections for over 60 years. The drug is characterized by its specific recognition of ergosterol (Erg) in the fungal cell membrane. AmB and Erg form an ion-channel assembly, which is thought to play a major role in the antibiotic activity of AmB. The precise structure of the ion channel in fungal membranes still remains unelucidated. Recently, the structure of an AmB assembly formed in artificial lipid bilayers was determined using solid-state NMR and molecular dynamics simulations. The structure elucidation was made possible by using <sup>13</sup>C- and <sup>19</sup>F-labelled AmBs, which were efficiently synthesized using strategies and methods established in previous studies. This review focuses on the structure of the AmB ion channel, which accounts for the antibiotic activity. Additionally, the chemical syntheses of isotope-labelled AmB and Erg used for the structural studies are also reviewed. Solid-state NMR spectra of the labelled AmBs were recorded to measure the distances between labelled sites in the AmB-Erg assembly in lipid bilayers, revealing that the ion channel consisting of seven molecules of AmB spans the bilayer with a single molecule length. Extensive molecular dynamics simulations showed that the conductance of this AmB channel is comparable with those by single-channel recording. The simulations also demonstrated that Erg stabilizes the ion-channel assemblies more efficiently than human cholesterol. The atomic-level structure of the AmB channel in the artificial bilayer will help us to understand the mechanisms of the pharmacological actions and adverse effects of AmB.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ob01468e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01468e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
NMR and molecular simulation studies on the structure elucidation of the amphotericin B ion channel using 13C and 19F labelling.

Amphotericin B (AmB) has been clinically used for serious fungal infections for over 60 years. The drug is characterized by its specific recognition of ergosterol (Erg) in the fungal cell membrane. AmB and Erg form an ion-channel assembly, which is thought to play a major role in the antibiotic activity of AmB. The precise structure of the ion channel in fungal membranes still remains unelucidated. Recently, the structure of an AmB assembly formed in artificial lipid bilayers was determined using solid-state NMR and molecular dynamics simulations. The structure elucidation was made possible by using 13C- and 19F-labelled AmBs, which were efficiently synthesized using strategies and methods established in previous studies. This review focuses on the structure of the AmB ion channel, which accounts for the antibiotic activity. Additionally, the chemical syntheses of isotope-labelled AmB and Erg used for the structural studies are also reviewed. Solid-state NMR spectra of the labelled AmBs were recorded to measure the distances between labelled sites in the AmB-Erg assembly in lipid bilayers, revealing that the ion channel consisting of seven molecules of AmB spans the bilayer with a single molecule length. Extensive molecular dynamics simulations showed that the conductance of this AmB channel is comparable with those by single-channel recording. The simulations also demonstrated that Erg stabilizes the ion-channel assemblies more efficiently than human cholesterol. The atomic-level structure of the AmB channel in the artificial bilayer will help us to understand the mechanisms of the pharmacological actions and adverse effects of AmB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: The international home of synthetic, physical and biomolecular organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信