Susanne M. Germann, Maxence Holtz, Michael Krogh Jensen and Carlos G. Acevedo-Rocha
{"title":"去瓶颈化细胞色素 P450 依赖性代谢途径,促进商业天然产品的生物合成。","authors":"Susanne M. Germann, Maxence Holtz, Michael Krogh Jensen and Carlos G. Acevedo-Rocha","doi":"10.1039/D4NP00027G","DOIUrl":null,"url":null,"abstract":"<p>Covering: 2016 to the end of 2024</p><p>This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" 12","pages":" 1846-1857"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products\",\"authors\":\"Susanne M. Germann, Maxence Holtz, Michael Krogh Jensen and Carlos G. Acevedo-Rocha\",\"doi\":\"10.1039/D4NP00027G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covering: 2016 to the end of 2024</p><p>This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.</p>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\" 12\",\"pages\":\" 1846-1857\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/np/d4np00027g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/np/d4np00027g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products
Covering: 2016 to the end of 2024
This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.