厌氧膜生物反应器中污泥的嗜中与嗜热消化。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Amr Mustafa Abdelrahman, Saba Aghdam Tabar, Busra Cicekalan, Safak Basa, Gulin Ucas, Huseyin Guven, Hale Ozgun, Izzet Ozturk, Ismail Koyuncu, Jules B van Lier, Eveline I P Volcke, Mustafa Evren Ersahin
{"title":"厌氧膜生物反应器中污泥的嗜中与嗜热消化。","authors":"Amr Mustafa Abdelrahman, Saba Aghdam Tabar, Busra Cicekalan, Safak Basa, Gulin Ucas, Huseyin Guven, Hale Ozgun, Izzet Ozturk, Ismail Koyuncu, Jules B van Lier, Eveline I P Volcke, Mustafa Evren Ersahin","doi":"10.1016/j.biortech.2024.131822","DOIUrl":null,"url":null,"abstract":"<p><p>Energy-efficient wastewater treatment plants (WWTPs) utilize systems like high-rate activated sludge (A-stage) system to redirect organics from wastewater are redirected into energy-rich sludge (A-sludge). Anaerobic membrane bioreactors (AnMBRs) offer lower footprint and higher effluent quality compared to conventional digesters. In this study, the biological treatment and the filtration performances of AnMBRs for A-sludge digestion under mesophilic and thermophilic conditions were comparatively evaluated through lab-scale experiments, mass balancing and dynamic modeling. Under thermophilic conditions, a higher COD fraction of the influent sludge was converted into methane gas than under mesophilic conditions (65% versus 57%). The energy balance indicated that the surplus energy recovery under thermophilic conditions was less than the additional energy required for heating the AnMBR, resulting in a more than three-fold higher net energy recovery under mesophilic conditions. Therefore, operating an AnMBR for sludge digestion under mesophilic conditions has a higher potential to improve the energy balance in WWTPs.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesophilic versus thermophilic digestion of sludge in anaerobic membrane bioreactors.\",\"authors\":\"Amr Mustafa Abdelrahman, Saba Aghdam Tabar, Busra Cicekalan, Safak Basa, Gulin Ucas, Huseyin Guven, Hale Ozgun, Izzet Ozturk, Ismail Koyuncu, Jules B van Lier, Eveline I P Volcke, Mustafa Evren Ersahin\",\"doi\":\"10.1016/j.biortech.2024.131822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Energy-efficient wastewater treatment plants (WWTPs) utilize systems like high-rate activated sludge (A-stage) system to redirect organics from wastewater are redirected into energy-rich sludge (A-sludge). Anaerobic membrane bioreactors (AnMBRs) offer lower footprint and higher effluent quality compared to conventional digesters. In this study, the biological treatment and the filtration performances of AnMBRs for A-sludge digestion under mesophilic and thermophilic conditions were comparatively evaluated through lab-scale experiments, mass balancing and dynamic modeling. Under thermophilic conditions, a higher COD fraction of the influent sludge was converted into methane gas than under mesophilic conditions (65% versus 57%). The energy balance indicated that the surplus energy recovery under thermophilic conditions was less than the additional energy required for heating the AnMBR, resulting in a more than three-fold higher net energy recovery under mesophilic conditions. Therefore, operating an AnMBR for sludge digestion under mesophilic conditions has a higher potential to improve the energy balance in WWTPs.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131822\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131822","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesophilic versus thermophilic digestion of sludge in anaerobic membrane bioreactors.

Energy-efficient wastewater treatment plants (WWTPs) utilize systems like high-rate activated sludge (A-stage) system to redirect organics from wastewater are redirected into energy-rich sludge (A-sludge). Anaerobic membrane bioreactors (AnMBRs) offer lower footprint and higher effluent quality compared to conventional digesters. In this study, the biological treatment and the filtration performances of AnMBRs for A-sludge digestion under mesophilic and thermophilic conditions were comparatively evaluated through lab-scale experiments, mass balancing and dynamic modeling. Under thermophilic conditions, a higher COD fraction of the influent sludge was converted into methane gas than under mesophilic conditions (65% versus 57%). The energy balance indicated that the surplus energy recovery under thermophilic conditions was less than the additional energy required for heating the AnMBR, resulting in a more than three-fold higher net energy recovery under mesophilic conditions. Therefore, operating an AnMBR for sludge digestion under mesophilic conditions has a higher potential to improve the energy balance in WWTPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信