Ti3C2Tx MXene 违反维德曼-弗朗茨定律和超低导热性。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-11-17 DOI:10.1021/acsnano.4c08189
Yubin Huang, Jean Spiece, Tetiana Parker, Asaph Lee, Yury Gogotsi, Pascal Gehring
{"title":"Ti3C2Tx MXene 违反维德曼-弗朗茨定律和超低导热性。","authors":"Yubin Huang, Jean Spiece, Tetiana Parker, Asaph Lee, Yury Gogotsi, Pascal Gehring","doi":"10.1021/acsnano.4c08189","DOIUrl":null,"url":null,"abstract":"<p><p>The high electrical conductivity and good chemical stability of MXenes offer hopes for their use in many applications, such as wearable electronics, energy storage, and electromagnetic interference shielding. While their optical, electronic, and electrochemical properties have been widely studied, information on the thermal properties of MXenes is scarce. In this study, we investigate the heat transport properties of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene single flakes using scanning thermal microscopy and find exceptionally low anisotropic thermal conductivities within the Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> flakes, leading to an effective thermal conductivity of 0.78 ± 0.21 W m<sup>-1</sup> K<sup>-1</sup>. This observation is in stark contrast to the predictions of the Wiedemann-Franz law, as the estimated Lorenz number is only 0.25 of the classical value. Due to the combination of low thermal conductivity and low emissivity of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, the heat loss from it is 2 orders of magnitude smaller than that from common metals. Our study explores the heat transport mechanisms of MXenes and highlights a promising approach for developing thermal insulation, two-dimensional thermoelectric, or infrared stealth materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Violation of the Wiedemann-Franz Law and Ultralow Thermal Conductivity of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene.\",\"authors\":\"Yubin Huang, Jean Spiece, Tetiana Parker, Asaph Lee, Yury Gogotsi, Pascal Gehring\",\"doi\":\"10.1021/acsnano.4c08189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high electrical conductivity and good chemical stability of MXenes offer hopes for their use in many applications, such as wearable electronics, energy storage, and electromagnetic interference shielding. While their optical, electronic, and electrochemical properties have been widely studied, information on the thermal properties of MXenes is scarce. In this study, we investigate the heat transport properties of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene single flakes using scanning thermal microscopy and find exceptionally low anisotropic thermal conductivities within the Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> flakes, leading to an effective thermal conductivity of 0.78 ± 0.21 W m<sup>-1</sup> K<sup>-1</sup>. This observation is in stark contrast to the predictions of the Wiedemann-Franz law, as the estimated Lorenz number is only 0.25 of the classical value. Due to the combination of low thermal conductivity and low emissivity of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, the heat loss from it is 2 orders of magnitude smaller than that from common metals. Our study explores the heat transport mechanisms of MXenes and highlights a promising approach for developing thermal insulation, two-dimensional thermoelectric, or infrared stealth materials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c08189\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08189","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化二烯的高导电性和良好的化学稳定性为其在可穿戴电子设备、能量存储和电磁干扰屏蔽等许多应用领域的应用带来了希望。虽然人们对它们的光学、电子和电化学特性进行了广泛研究,但有关 MXenes 热特性的信息却很少。在本研究中,我们使用扫描热显微镜研究了 Ti3C2Tx MXene 单片的热传输特性,发现 Ti3C2Tx 片状材料内部的各向异性热传导率极低,有效热传导率为 0.78 ± 0.21 W m-1 K-1。这一观察结果与维德曼-弗兰茨定律的预测形成了鲜明对比,因为估计的洛伦兹数仅为经典值的 0.25。由于 Ti3C2Tx 兼具低热导率和低发射率的特点,其热量损失比普通金属小两个数量级。我们的研究探索了 MXenes 的热传输机制,为开发隔热材料、二维热电材料或红外隐形材料提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Violation of the Wiedemann-Franz Law and Ultralow Thermal Conductivity of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene.

Violation of the Wiedemann-Franz Law and Ultralow Thermal Conductivity of Ti3C2Tx MXene.

The high electrical conductivity and good chemical stability of MXenes offer hopes for their use in many applications, such as wearable electronics, energy storage, and electromagnetic interference shielding. While their optical, electronic, and electrochemical properties have been widely studied, information on the thermal properties of MXenes is scarce. In this study, we investigate the heat transport properties of Ti3C2Tx MXene single flakes using scanning thermal microscopy and find exceptionally low anisotropic thermal conductivities within the Ti3C2Tx flakes, leading to an effective thermal conductivity of 0.78 ± 0.21 W m-1 K-1. This observation is in stark contrast to the predictions of the Wiedemann-Franz law, as the estimated Lorenz number is only 0.25 of the classical value. Due to the combination of low thermal conductivity and low emissivity of Ti3C2Tx, the heat loss from it is 2 orders of magnitude smaller than that from common metals. Our study explores the heat transport mechanisms of MXenes and highlights a promising approach for developing thermal insulation, two-dimensional thermoelectric, or infrared stealth materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信