Rui Gong, Feng Wang, Jin Cheng, Yani Lu, Renchao Hu, Hongjie Huang, Baofu Ding, Hong Wang
{"title":"透辉石-聚合物复合材料的水致变色效应","authors":"Rui Gong, Feng Wang, Jin Cheng, Yani Lu, Renchao Hu, Hongjie Huang, Baofu Ding, Hong Wang","doi":"10.1021/acsnano.4c09930","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrochromic materials undergo magical color changes when interacting with water and are receiving widespread attention for their frontier applications such as sensing and information security. The hydrochromic effect is observable in perovskite materials via the mechanism of water-induced fluorescence quenching. However, due to water isolation, achieving a hydrochromic effect in perovskite-polymer composite remains elusive, notwithstanding its importance as a potentially commercial-ready material. Here, we demonstrate a hydrochromic effect of perovskite-polymer-based porous composite via a nonsolvent-induced phase separation method, comprising of FA<sub>2</sub>PbBr<sub>4</sub>/poly(vinylidene fluoride) (FA = formamidinium). The naturally formed pores serve as microchannels, facilitating moisture diffusion. The penetrated water induces a phase transition of perovskite material from the nonfluorescent two-dimensional FA<sub>2</sub>PbBr<sub>4</sub> to the fluorescent three-dimensional FAPbBr<sub>3</sub>. This work has developed the hydrochromic perovskite-polymer composites, enabling various commercial-ready chromatic applications as conceptually demonstrated custom-made fingerprint labels, quick response code anticounterfeiting labels, encrypted document protections, and water-ink inkjet printing.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrochromic Effect of Perovskite-Polymer Composites.\",\"authors\":\"Rui Gong, Feng Wang, Jin Cheng, Yani Lu, Renchao Hu, Hongjie Huang, Baofu Ding, Hong Wang\",\"doi\":\"10.1021/acsnano.4c09930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrochromic materials undergo magical color changes when interacting with water and are receiving widespread attention for their frontier applications such as sensing and information security. The hydrochromic effect is observable in perovskite materials via the mechanism of water-induced fluorescence quenching. However, due to water isolation, achieving a hydrochromic effect in perovskite-polymer composite remains elusive, notwithstanding its importance as a potentially commercial-ready material. Here, we demonstrate a hydrochromic effect of perovskite-polymer-based porous composite via a nonsolvent-induced phase separation method, comprising of FA<sub>2</sub>PbBr<sub>4</sub>/poly(vinylidene fluoride) (FA = formamidinium). The naturally formed pores serve as microchannels, facilitating moisture diffusion. The penetrated water induces a phase transition of perovskite material from the nonfluorescent two-dimensional FA<sub>2</sub>PbBr<sub>4</sub> to the fluorescent three-dimensional FAPbBr<sub>3</sub>. This work has developed the hydrochromic perovskite-polymer composites, enabling various commercial-ready chromatic applications as conceptually demonstrated custom-made fingerprint labels, quick response code anticounterfeiting labels, encrypted document protections, and water-ink inkjet printing.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09930\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09930","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrochromic Effect of Perovskite-Polymer Composites.
Hydrochromic materials undergo magical color changes when interacting with water and are receiving widespread attention for their frontier applications such as sensing and information security. The hydrochromic effect is observable in perovskite materials via the mechanism of water-induced fluorescence quenching. However, due to water isolation, achieving a hydrochromic effect in perovskite-polymer composite remains elusive, notwithstanding its importance as a potentially commercial-ready material. Here, we demonstrate a hydrochromic effect of perovskite-polymer-based porous composite via a nonsolvent-induced phase separation method, comprising of FA2PbBr4/poly(vinylidene fluoride) (FA = formamidinium). The naturally formed pores serve as microchannels, facilitating moisture diffusion. The penetrated water induces a phase transition of perovskite material from the nonfluorescent two-dimensional FA2PbBr4 to the fluorescent three-dimensional FAPbBr3. This work has developed the hydrochromic perovskite-polymer composites, enabling various commercial-ready chromatic applications as conceptually demonstrated custom-made fingerprint labels, quick response code anticounterfeiting labels, encrypted document protections, and water-ink inkjet printing.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.