水解动力学研究和磷酰胺丙肽-阿昔洛韦单一异构体的合成。

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-11-01 eCollection Date: 2024-11-12 DOI:10.1021/acsomega.4c06645
Thitiphong Khamkhenshorngphanuch, Pitchayathida Mee-Udorn, Maleeruk Utsintong, Chutima Thepparit, Nitipol Srimongkolpithak, Sewan Theeramunkong
{"title":"水解动力学研究和磷酰胺丙肽-阿昔洛韦单一异构体的合成。","authors":"Thitiphong Khamkhenshorngphanuch, Pitchayathida Mee-Udorn, Maleeruk Utsintong, Chutima Thepparit, Nitipol Srimongkolpithak, Sewan Theeramunkong","doi":"10.1021/acsomega.4c06645","DOIUrl":null,"url":null,"abstract":"<p><p>Acyclovir (ACV) is a vital treatment for herpes simplex (HSV) and varicella-zoster virus (VZV) infections that inhibit viral DNA polymerase. Phosphoramidate ProTides-ACV, a promising technology, circumvents the reliance on thymidine kinase (TK) for activation. Twelve novel single isomers of phosphoramidate ProTide-ACV were synthesized. Successful isomer separation was achieved, emphasizing the importance of single isomers in medical advancements. The enzymatic hydrolysis kinetics of the synthesized compounds were investigated by using carboxypeptidase Y (CPY). The results revealed a faster conversion for the isomer <i>R</i>p- than for the <i>S</i>p-diastereomer. Hydrolysis experiments confirmed steric hindrance effects, particularly with the <i>tert</i>-butyl and isopropyl groups. Molecular modeling elucidated the mechanisms of hydrolysis, supporting the results of the experiments. This research sheds light on the potential of phosphoramidate ProTides-ACV, bridging the gap in understanding their biological and metabolic properties, while supporting future investigations into anti-HSV activity. Preliminary screening revealed that three of the four single isomers demonstrated superior antiviral efficacy against wild-type HSV-1 compared to acyclovir, with isomer <b>24a</b> ultimately reducing the viral yield at 200 μM. These findings emphasize the importance of isolating racemic ACV-ProTides as pure single isomers for future drug development.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 45","pages":"45221-45231"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561759/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study of Hydrolysis Kinetics and Synthesis of Single Isomer of Phosphoramidate ProTide-Acyclovir.\",\"authors\":\"Thitiphong Khamkhenshorngphanuch, Pitchayathida Mee-Udorn, Maleeruk Utsintong, Chutima Thepparit, Nitipol Srimongkolpithak, Sewan Theeramunkong\",\"doi\":\"10.1021/acsomega.4c06645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acyclovir (ACV) is a vital treatment for herpes simplex (HSV) and varicella-zoster virus (VZV) infections that inhibit viral DNA polymerase. Phosphoramidate ProTides-ACV, a promising technology, circumvents the reliance on thymidine kinase (TK) for activation. Twelve novel single isomers of phosphoramidate ProTide-ACV were synthesized. Successful isomer separation was achieved, emphasizing the importance of single isomers in medical advancements. The enzymatic hydrolysis kinetics of the synthesized compounds were investigated by using carboxypeptidase Y (CPY). The results revealed a faster conversion for the isomer <i>R</i>p- than for the <i>S</i>p-diastereomer. Hydrolysis experiments confirmed steric hindrance effects, particularly with the <i>tert</i>-butyl and isopropyl groups. Molecular modeling elucidated the mechanisms of hydrolysis, supporting the results of the experiments. This research sheds light on the potential of phosphoramidate ProTides-ACV, bridging the gap in understanding their biological and metabolic properties, while supporting future investigations into anti-HSV activity. Preliminary screening revealed that three of the four single isomers demonstrated superior antiviral efficacy against wild-type HSV-1 compared to acyclovir, with isomer <b>24a</b> ultimately reducing the viral yield at 200 μM. These findings emphasize the importance of isolating racemic ACV-ProTides as pure single isomers for future drug development.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 45\",\"pages\":\"45221-45231\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561759/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c06645\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c06645","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阿昔洛韦(ACV)是治疗单纯疱疹(HSV)和水痘-带状疱疹病毒(VZV)感染的重要药物,可抑制病毒 DNA 聚合酶。磷酰胺 ProTides-ACV 是一种前景广阔的技术,可避免依赖胸苷激酶 (TK) 激活。我们合成了 12 种新型磷酰胺 ProTide-ACV 单一异构体。成功实现了异构体分离,强调了单一异构体在医学进步中的重要性。使用羧肽酶 Y (CPY) 研究了合成化合物的酶水解动力学。结果表明,异构体 Rp- 的转化速度快于 Sp-非对映异构体。水解实验证实了立体阻碍效应,尤其是叔丁基和异丙基的立体阻碍效应。分子建模阐明了水解机制,支持了实验结果。这项研究揭示了磷酰胺类 ProTides-ACV 的潜力,弥补了人们在了解其生物和代谢特性方面的空白,同时为今后研究抗 HSV 活性提供了支持。初步筛选显示,与阿昔洛韦相比,四种单一异构体中有三种对野生型HSV-1具有更优越的抗病毒效果,其中异构体24a在200 μM时能最终降低病毒产量。这些发现强调了分离外消旋 ACV-ProTides 纯单异构体对未来药物开发的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Hydrolysis Kinetics and Synthesis of Single Isomer of Phosphoramidate ProTide-Acyclovir.

Acyclovir (ACV) is a vital treatment for herpes simplex (HSV) and varicella-zoster virus (VZV) infections that inhibit viral DNA polymerase. Phosphoramidate ProTides-ACV, a promising technology, circumvents the reliance on thymidine kinase (TK) for activation. Twelve novel single isomers of phosphoramidate ProTide-ACV were synthesized. Successful isomer separation was achieved, emphasizing the importance of single isomers in medical advancements. The enzymatic hydrolysis kinetics of the synthesized compounds were investigated by using carboxypeptidase Y (CPY). The results revealed a faster conversion for the isomer Rp- than for the Sp-diastereomer. Hydrolysis experiments confirmed steric hindrance effects, particularly with the tert-butyl and isopropyl groups. Molecular modeling elucidated the mechanisms of hydrolysis, supporting the results of the experiments. This research sheds light on the potential of phosphoramidate ProTides-ACV, bridging the gap in understanding their biological and metabolic properties, while supporting future investigations into anti-HSV activity. Preliminary screening revealed that three of the four single isomers demonstrated superior antiviral efficacy against wild-type HSV-1 compared to acyclovir, with isomer 24a ultimately reducing the viral yield at 200 μM. These findings emphasize the importance of isolating racemic ACV-ProTides as pure single isomers for future drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信