{"title":"嵌入式 MoS2 金属丝的原子级动态机制。","authors":"Gyeong Hee Ryu, Gang Seob Jung, Jamie H Warner","doi":"10.1021/acsnano.4c11656","DOIUrl":null,"url":null,"abstract":"<p><p>Nanowires composed of a 1:1 stoichiometry of transition metals and chalcogen ions can be fabricated from two-dimensional transition metal dichalcogenides (TMDs) by using electron beam irradiation. Wires fabricated through in situ experiments can be geometrically connected to TMD sheets in various ways, and their physical properties can vary accordingly. Understanding the structural transformation caused by electron beams is critical for designing wire-sheet structures for nanoelectronics. In this study, we report the behavior of nanowires formed inside a monolayer MoS<sub>2</sub> sheet by combining phase-contrast images and large-scale atomistic modeling. We investigate the effect of vacancies on the dynamic evolution of wires, such as rotations with different edge structures and breaking, by considering the interactions between MoS wires and MoS<sub>2</sub> nanosheets. The obtained insights can be applied to other monolayer TMDs to guide the behavior of TMD wires and fabricate favorable geometries for various applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-Scale Dynamic Mechanisms of Embedded MoS<sub>2</sub> Wires.\",\"authors\":\"Gyeong Hee Ryu, Gang Seob Jung, Jamie H Warner\",\"doi\":\"10.1021/acsnano.4c11656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanowires composed of a 1:1 stoichiometry of transition metals and chalcogen ions can be fabricated from two-dimensional transition metal dichalcogenides (TMDs) by using electron beam irradiation. Wires fabricated through in situ experiments can be geometrically connected to TMD sheets in various ways, and their physical properties can vary accordingly. Understanding the structural transformation caused by electron beams is critical for designing wire-sheet structures for nanoelectronics. In this study, we report the behavior of nanowires formed inside a monolayer MoS<sub>2</sub> sheet by combining phase-contrast images and large-scale atomistic modeling. We investigate the effect of vacancies on the dynamic evolution of wires, such as rotations with different edge structures and breaking, by considering the interactions between MoS wires and MoS<sub>2</sub> nanosheets. The obtained insights can be applied to other monolayer TMDs to guide the behavior of TMD wires and fabricate favorable geometries for various applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c11656\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11656","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomic-Scale Dynamic Mechanisms of Embedded MoS2 Wires.
Nanowires composed of a 1:1 stoichiometry of transition metals and chalcogen ions can be fabricated from two-dimensional transition metal dichalcogenides (TMDs) by using electron beam irradiation. Wires fabricated through in situ experiments can be geometrically connected to TMD sheets in various ways, and their physical properties can vary accordingly. Understanding the structural transformation caused by electron beams is critical for designing wire-sheet structures for nanoelectronics. In this study, we report the behavior of nanowires formed inside a monolayer MoS2 sheet by combining phase-contrast images and large-scale atomistic modeling. We investigate the effect of vacancies on the dynamic evolution of wires, such as rotations with different edge structures and breaking, by considering the interactions between MoS wires and MoS2 nanosheets. The obtained insights can be applied to other monolayer TMDs to guide the behavior of TMD wires and fabricate favorable geometries for various applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.