Zequn Liu, Honghong Zhao, Junru Yao, Minjie Liang, Youyi Sun, Ning Gu, Yang Cao
{"title":"用于电磁波吸收的金属有机框架衍生二维 CNPs 超结构。","authors":"Zequn Liu, Honghong Zhao, Junru Yao, Minjie Liang, Youyi Sun, Ning Gu, Yang Cao","doi":"10.1021/acsami.4c14804","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanoparticles (CNPs) derived from metal-organic frameworks (ZIF-8) are synthesized, which are further self-assembled into mono- or bilayer superstructures for electromagnetic (EM) wave absorption. Furthermore, the effect of ZIF-8 morphology (cubic or rhombic dodecahedral) on the superstructure and EM absorption performance of CNPs is investigated. The as-prepared cubic bilayer superstructure exhibits a higher BET surface area of 526.1 m<sup>2</sup>/g and a higher pore volume of 0.232 cm<sup>3</sup>/g than the rhombic dodecahedral monolayer superstructure (30.0 m<sup>2</sup>/g and 0.051 cm<sup>3</sup>/g, respectively). As a result, the two-dimensional CNPs with a bilayer structure are able to deliver the highest EM absorption performance with an effective absorption bandwidth of 6.2 GHz at a thickness of merely 2.4 mm. This work provides a new approach to designing and preparing high-performance EM wave absorption materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"65173-65184"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional CNPs Superstructures Derived from Metal-Organic Frameworks for Electromagnetic Wave Absorption.\",\"authors\":\"Zequn Liu, Honghong Zhao, Junru Yao, Minjie Liang, Youyi Sun, Ning Gu, Yang Cao\",\"doi\":\"10.1021/acsami.4c14804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon nanoparticles (CNPs) derived from metal-organic frameworks (ZIF-8) are synthesized, which are further self-assembled into mono- or bilayer superstructures for electromagnetic (EM) wave absorption. Furthermore, the effect of ZIF-8 morphology (cubic or rhombic dodecahedral) on the superstructure and EM absorption performance of CNPs is investigated. The as-prepared cubic bilayer superstructure exhibits a higher BET surface area of 526.1 m<sup>2</sup>/g and a higher pore volume of 0.232 cm<sup>3</sup>/g than the rhombic dodecahedral monolayer superstructure (30.0 m<sup>2</sup>/g and 0.051 cm<sup>3</sup>/g, respectively). As a result, the two-dimensional CNPs with a bilayer structure are able to deliver the highest EM absorption performance with an effective absorption bandwidth of 6.2 GHz at a thickness of merely 2.4 mm. This work provides a new approach to designing and preparing high-performance EM wave absorption materials.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"65173-65184\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c14804\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14804","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-Dimensional CNPs Superstructures Derived from Metal-Organic Frameworks for Electromagnetic Wave Absorption.
Carbon nanoparticles (CNPs) derived from metal-organic frameworks (ZIF-8) are synthesized, which are further self-assembled into mono- or bilayer superstructures for electromagnetic (EM) wave absorption. Furthermore, the effect of ZIF-8 morphology (cubic or rhombic dodecahedral) on the superstructure and EM absorption performance of CNPs is investigated. The as-prepared cubic bilayer superstructure exhibits a higher BET surface area of 526.1 m2/g and a higher pore volume of 0.232 cm3/g than the rhombic dodecahedral monolayer superstructure (30.0 m2/g and 0.051 cm3/g, respectively). As a result, the two-dimensional CNPs with a bilayer structure are able to deliver the highest EM absorption performance with an effective absorption bandwidth of 6.2 GHz at a thickness of merely 2.4 mm. This work provides a new approach to designing and preparing high-performance EM wave absorption materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.