关于半无限分布电阻器-恒定相位元件传输线

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Anis Allagui, Enrique H. Balaguera
{"title":"关于半无限分布电阻器-恒定相位元件传输线","authors":"Anis Allagui, Enrique H. Balaguera","doi":"10.1016/j.electacta.2024.145344","DOIUrl":null,"url":null,"abstract":"Under a particular geometrical arrangements of impedances of the type resistors and capacitors for the modeling of a transmission line, the voltage and current along the line are known to follow the standard partial differential equation of diffusion. In this work we propose a generalization of this circuit network by considering the non-ideal fractional capacitive element, also known as constant phase element (CPE), as the energy storage component. The CPE’s impedance is given by <span><span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Z</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">s</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msup><mo is=\"true\">)</mo></mrow></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Z</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">s</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msup><mo is=\"true\">)</mo></mrow></mrow></math></script></span>, where <span><span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mo><mn is=\"true\">0</mn></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">&gt;</mo><mn is=\"true\">0</mn></mrow></math></script></span> and <span><span><math><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">&lt;</mo><mi is=\"true\">α</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">⩽</mo><mn is=\"true\">1</mn></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">0</mn><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">&lt;</mo><mi is=\"true\">α</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">⩽</mo><mn is=\"true\">1</mn></mrow></math></script></span>, and offers an extra degree of freedom compared to the ideal capacitor of impedance <span><span><math><mrow is=\"true\"><mi is=\"true\">Z</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">C</mi><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">Z</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">C</mi><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow></mrow></math></script></span>. This leads to an anomalous time-fractional diffusion equation that we solve considering the Caputo fractional derivative definition for the case of one-dimensional, semi-infinite propagation under a constant voltage excitation at <span><span><math><mrow is=\"true\"><mi is=\"true\">x</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mn is=\"true\">0</mn></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">x</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mn is=\"true\">0</mn></mrow></math></script></span>. The voltage and current responses are found analytically in terms of the Fox’s <span><span><math><mi is=\"true\">H</mi></math></span><script type=\"math/mml\"><math><mi is=\"true\">H</mi></math></script></span>-function. We discuss the implications of the dispersive nature of the CPE on the time-domain response along the transmission line system, as well as on the frequency-domain input impedance.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"8 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the semi-infinite distributed resistor-constant phase element transmission line\",\"authors\":\"Anis Allagui, Enrique H. Balaguera\",\"doi\":\"10.1016/j.electacta.2024.145344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under a particular geometrical arrangements of impedances of the type resistors and capacitors for the modeling of a transmission line, the voltage and current along the line are known to follow the standard partial differential equation of diffusion. In this work we propose a generalization of this circuit network by considering the non-ideal fractional capacitive element, also known as constant phase element (CPE), as the energy storage component. The CPE’s impedance is given by <span><span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">Z</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi></mrow></msub><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">s</mi><mo is=\\\"true\\\">)</mo></mrow><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mo><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">/</mo><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">C</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">α</mi></mrow></msub><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">s</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">α</mi></mrow></msup><mo is=\\\"true\\\">)</mo></mrow></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">Z</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi></mrow></msub><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">s</mi><mo is=\\\"true\\\">)</mo></mrow><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">=</mo><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">/</mo><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">C</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">α</mi></mrow></msub><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">s</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">α</mi></mrow></msup><mo is=\\\"true\\\">)</mo></mrow></mrow></math></script></span>, where <span><span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">C</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">α</mi></mrow></msub><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&gt;</mo><mn is=\\\"true\\\">0</mn></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">C</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">α</mi></mrow></msub><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">&gt;</mo><mn is=\\\"true\\\">0</mn></mrow></math></script></span> and <span><span><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&lt;</mo><mi is=\\\"true\\\">α</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">⩽</mo><mn is=\\\"true\\\">1</mn></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">&lt;</mo><mi is=\\\"true\\\">α</mi><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">⩽</mo><mn is=\\\"true\\\">1</mn></mrow></math></script></span>, and offers an extra degree of freedom compared to the ideal capacitor of impedance <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">Z</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mo><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">/</mo><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">C</mi><mi is=\\\"true\\\">s</mi><mo is=\\\"true\\\">)</mo></mrow></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">Z</mi><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">=</mo><mn is=\\\"true\\\">1</mn><mo is=\\\"true\\\">/</mo><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">C</mi><mi is=\\\"true\\\">s</mi><mo is=\\\"true\\\">)</mo></mrow></mrow></math></script></span>. This leads to an anomalous time-fractional diffusion equation that we solve considering the Caputo fractional derivative definition for the case of one-dimensional, semi-infinite propagation under a constant voltage excitation at <span><span><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">x</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mo><mn is=\\\"true\\\">0</mn></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">x</mi><mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\" is=\\\"true\\\">=</mo><mn is=\\\"true\\\">0</mn></mrow></math></script></span>. The voltage and current responses are found analytically in terms of the Fox’s <span><span><math><mi is=\\\"true\\\">H</mi></math></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">H</mi></math></script></span>-function. We discuss the implications of the dispersive nature of the CPE on the time-domain response along the transmission line system, as well as on the frequency-domain input impedance.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2024.145344\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145344","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在为输电线路建模而对电阻器和电容器类型的阻抗进行特定几何排列的情况下,已知线路上的电压和电流遵循标准的扩散偏微分方程。在这项工作中,我们提出了对这一电路网络的概括,将非理想分数电容元件(也称为恒定相位元件 (CPE))视为储能元件。CPE 的阻抗由 Zc(s)=1/(Cαsα)Zc(s)=1/(Cαsα) 给出,其中 Cα>0Cα>0 和 0<α⩽10<α⩽1,与阻抗 Z=1/(Cs)Z=1/(Cs) 的理想电容器相比,CPE 提供了额外的自由度。在 x=0x=0 处恒定电压激励下,我们根据卡普托分数导数定义求解了一维半无限传播情况下的反常时间分数扩散方程。我们讨论了 CPE 的色散性质对传输线系统时域响应以及频域输入阻抗的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the semi-infinite distributed resistor-constant phase element transmission line
Under a particular geometrical arrangements of impedances of the type resistors and capacitors for the modeling of a transmission line, the voltage and current along the line are known to follow the standard partial differential equation of diffusion. In this work we propose a generalization of this circuit network by considering the non-ideal fractional capacitive element, also known as constant phase element (CPE), as the energy storage component. The CPE’s impedance is given by Zc(s)=1/(Cαsα), where Cα>0 and 0<α1, and offers an extra degree of freedom compared to the ideal capacitor of impedance Z=1/(Cs). This leads to an anomalous time-fractional diffusion equation that we solve considering the Caputo fractional derivative definition for the case of one-dimensional, semi-infinite propagation under a constant voltage excitation at x=0. The voltage and current responses are found analytically in terms of the Fox’s H-function. We discuss the implications of the dispersive nature of the CPE on the time-domain response along the transmission line system, as well as on the frequency-domain input impedance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信