利用 Au-TiO2/Shewanella 生物杂化技术实现等离子体诱导的可见光驱动的六价铬高效还原

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Huihui Dong, Qinzheng Yang, Zhiyuan Yang, Yingying Lan, Wenlong Wang
{"title":"利用 Au-TiO2/Shewanella 生物杂化技术实现等离子体诱导的可见光驱动的六价铬高效还原","authors":"Huihui Dong, Qinzheng Yang, Zhiyuan Yang, Yingying Lan, Wenlong Wang","doi":"10.1016/j.apsusc.2024.161822","DOIUrl":null,"url":null,"abstract":"The application of microbe-photocatalyst biohybrid (MPB) systems to pollutant removals has drawn considerable attentions due to the high demands on energy shortage and environmental pollution prevention. However, the stability and utilization rate of photoelectrons generated under the photocatalysis of plasmonic metals are still low. Herein, we constructed a new Au-TiO<sub>2</sub>/<em>Shewanella</em> biohybrid<!-- --> <!-- -->system by combining photocatalyst and electrogenic bacteria to realize the plasmon-induced<!-- --> <!-- -->visible-light-driven reduction of hexavalent chromium. The highly hydrophilic Au-TiO<sub>2</sub> and the outer membrane protein (OmcA) of <em>Shewanella</em> were effectively complexed to form a tight composite. The irradiation of visible light increases the expression level of extracellular polymeric substances (EPS) in the MPB system and upregulates the function gene of OmcA and MtrC, suggesting that the photoelectrons are absorbed by the conductive protein and deposited into the microbes to realize high efficiency chromium removal (68.9%). This study successfully utilize the photogenerated electrons under the catalysis of plasmonic gold nanoparticles and opens up a new avenue to the application of MPB system in water treatment.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"165 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling high-efficiency plasmon-induced visible-light-driven reduction of hexavalent chromium with Au-TiO2/Shewanella biohybrid\",\"authors\":\"Huihui Dong, Qinzheng Yang, Zhiyuan Yang, Yingying Lan, Wenlong Wang\",\"doi\":\"10.1016/j.apsusc.2024.161822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of microbe-photocatalyst biohybrid (MPB) systems to pollutant removals has drawn considerable attentions due to the high demands on energy shortage and environmental pollution prevention. However, the stability and utilization rate of photoelectrons generated under the photocatalysis of plasmonic metals are still low. Herein, we constructed a new Au-TiO<sub>2</sub>/<em>Shewanella</em> biohybrid<!-- --> <!-- -->system by combining photocatalyst and electrogenic bacteria to realize the plasmon-induced<!-- --> <!-- -->visible-light-driven reduction of hexavalent chromium. The highly hydrophilic Au-TiO<sub>2</sub> and the outer membrane protein (OmcA) of <em>Shewanella</em> were effectively complexed to form a tight composite. The irradiation of visible light increases the expression level of extracellular polymeric substances (EPS) in the MPB system and upregulates the function gene of OmcA and MtrC, suggesting that the photoelectrons are absorbed by the conductive protein and deposited into the microbes to realize high efficiency chromium removal (68.9%). This study successfully utilize the photogenerated electrons under the catalysis of plasmonic gold nanoparticles and opens up a new avenue to the application of MPB system in water treatment.\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsusc.2024.161822\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161822","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于能源短缺和环境污染防治的高要求,微生物-光催化剂生物杂交(MPB)系统在污染物去除方面的应用已引起广泛关注。然而,等离子体金属在光催化过程中产生的光电子的稳定性和利用率仍然较低。在此,我们结合光催化剂和电生细菌,构建了一种新型 Au-TiO2/Shewanella 生物杂交系统,实现了等离子体诱导的可见光驱动的六价铬还原。高亲水性的 Au-TiO2 与雪旺菌的外膜蛋白(OmcA)有效复合,形成紧密的复合体。可见光的照射提高了 MPB 系统中细胞外高分子物质(EPS)的表达水平,并上调了 OmcA 和 MtrC 的功能基因,表明光电子被导电蛋白吸收并沉积到微生物体内,从而实现了高效的铬去除率(68.9%)。这项研究成功地利用了质子金纳米粒子催化下的光生电子,为 MPB 系统在水处理中的应用开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enabling high-efficiency plasmon-induced visible-light-driven reduction of hexavalent chromium with Au-TiO2/Shewanella biohybrid

Enabling high-efficiency plasmon-induced visible-light-driven reduction of hexavalent chromium with Au-TiO2/Shewanella biohybrid
The application of microbe-photocatalyst biohybrid (MPB) systems to pollutant removals has drawn considerable attentions due to the high demands on energy shortage and environmental pollution prevention. However, the stability and utilization rate of photoelectrons generated under the photocatalysis of plasmonic metals are still low. Herein, we constructed a new Au-TiO2/Shewanella biohybrid system by combining photocatalyst and electrogenic bacteria to realize the plasmon-induced visible-light-driven reduction of hexavalent chromium. The highly hydrophilic Au-TiO2 and the outer membrane protein (OmcA) of Shewanella were effectively complexed to form a tight composite. The irradiation of visible light increases the expression level of extracellular polymeric substances (EPS) in the MPB system and upregulates the function gene of OmcA and MtrC, suggesting that the photoelectrons are absorbed by the conductive protein and deposited into the microbes to realize high efficiency chromium removal (68.9%). This study successfully utilize the photogenerated electrons under the catalysis of plasmonic gold nanoparticles and opens up a new avenue to the application of MPB system in water treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信