{"title":"构建界面分子层与 Zn2+ 转移/沉积动力学调制相结合,实现深度可逆锌阳极","authors":"Shangqing Jiao, Yulong Gao, Weigang Zhang, Zhen Xue, Yudong Wu, Zhiqian Cao","doi":"10.1016/j.ensm.2024.103909","DOIUrl":null,"url":null,"abstract":"Irreversible Zn dendrite formation and hydrogen evolution reactions (HER) have significantly impeded the large-scale commercial deployment of aqueous zinc-metal batteries (AZMBs). Herein, we proposed an innovative interfacial strategy activated by the biomacromolecule Pullulan (Pul) on the surface of metal zinc anodes (ZMAs) within the electrolyte system. The combination of comprehensive experimental results and simulation calculations demonstrated that the spontaneous assembly of the interfacial molecular layer (IML), facilitated by the adaptive adsorption of Pul molecules, not only triggers the formation of a Zn²⁺-concentrated region and effectively balances ionic flux, but also simultaneously transforms the nucleation growth pattern of Zn<sup>2+</sup> into an instantaneous and progressive hybridized mechanism, reconfiguring the Zn<sup>2+</sup> transfer/deposition kinetics at the heterogeneous electrode/electrolyte interface. Moreover, the IML provides a stable shielding effect for hydrated hydrogen with high thermodynamic activity and SO<sub>4</sub><sup>2−</sup> at the solid-liquid interface. Therefore, a smooth and compact Zn deposition layer devoid of dendritic growth is achieved during subsequent plating processes. As a result, Zn||Zn symmetric cells utilizing modified electrolytes exhibit remarkable plating/stripping performance exceeding 1800 hours without significant voltage fluctuations, which contributes to the exceptional long-term durability observed in Zn||CNTs@MnO<sub>2</sub> batteries.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"8 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing interfacial molecular layer coupled with Zn2+ transfer/deposition kinetics modulation toward deeply reversible Zn anodes\",\"authors\":\"Shangqing Jiao, Yulong Gao, Weigang Zhang, Zhen Xue, Yudong Wu, Zhiqian Cao\",\"doi\":\"10.1016/j.ensm.2024.103909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irreversible Zn dendrite formation and hydrogen evolution reactions (HER) have significantly impeded the large-scale commercial deployment of aqueous zinc-metal batteries (AZMBs). Herein, we proposed an innovative interfacial strategy activated by the biomacromolecule Pullulan (Pul) on the surface of metal zinc anodes (ZMAs) within the electrolyte system. The combination of comprehensive experimental results and simulation calculations demonstrated that the spontaneous assembly of the interfacial molecular layer (IML), facilitated by the adaptive adsorption of Pul molecules, not only triggers the formation of a Zn²⁺-concentrated region and effectively balances ionic flux, but also simultaneously transforms the nucleation growth pattern of Zn<sup>2+</sup> into an instantaneous and progressive hybridized mechanism, reconfiguring the Zn<sup>2+</sup> transfer/deposition kinetics at the heterogeneous electrode/electrolyte interface. Moreover, the IML provides a stable shielding effect for hydrated hydrogen with high thermodynamic activity and SO<sub>4</sub><sup>2−</sup> at the solid-liquid interface. Therefore, a smooth and compact Zn deposition layer devoid of dendritic growth is achieved during subsequent plating processes. As a result, Zn||Zn symmetric cells utilizing modified electrolytes exhibit remarkable plating/stripping performance exceeding 1800 hours without significant voltage fluctuations, which contributes to the exceptional long-term durability observed in Zn||CNTs@MnO<sub>2</sub> batteries.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103909\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103909","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Irreversible Zn dendrite formation and hydrogen evolution reactions (HER) have significantly impeded the large-scale commercial deployment of aqueous zinc-metal batteries (AZMBs). Herein, we proposed an innovative interfacial strategy activated by the biomacromolecule Pullulan (Pul) on the surface of metal zinc anodes (ZMAs) within the electrolyte system. The combination of comprehensive experimental results and simulation calculations demonstrated that the spontaneous assembly of the interfacial molecular layer (IML), facilitated by the adaptive adsorption of Pul molecules, not only triggers the formation of a Zn²⁺-concentrated region and effectively balances ionic flux, but also simultaneously transforms the nucleation growth pattern of Zn2+ into an instantaneous and progressive hybridized mechanism, reconfiguring the Zn2+ transfer/deposition kinetics at the heterogeneous electrode/electrolyte interface. Moreover, the IML provides a stable shielding effect for hydrated hydrogen with high thermodynamic activity and SO42− at the solid-liquid interface. Therefore, a smooth and compact Zn deposition layer devoid of dendritic growth is achieved during subsequent plating processes. As a result, Zn||Zn symmetric cells utilizing modified electrolytes exhibit remarkable plating/stripping performance exceeding 1800 hours without significant voltage fluctuations, which contributes to the exceptional long-term durability observed in Zn||CNTs@MnO2 batteries.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.