Jan Hrabovsky, Miroslav Kucera, Lucie Palousova, Jakub Zazvorka, Jan Kubat, Lei Bi, Martin Veis
{"title":"发光材料中稀土掺杂均匀性的快速精确大面积绘图","authors":"Jan Hrabovsky, Miroslav Kucera, Lucie Palousova, Jakub Zazvorka, Jan Kubat, Lei Bi, Martin Veis","doi":"10.1038/s43246-024-00679-x","DOIUrl":null,"url":null,"abstract":"Doping of luminescent materials by rare-earth ions is common practice to achieve desired emission properties for a large variety of applications. As several rare-earths ions are frequently combined, it is subsequently difficult to effectively detect and control their homogeneous distribution within the host material. Here, we present a simple, rapid, large scale and precise method of rare-earth mapping using a commercial UV-Vis scanner. We discuss the influence of rare-earth distribution on the physical, optical and luminescent properties with no observable qualitative effect on photoluminescent properties and optical anisotropy. On the contrary, rare-earth-rich areas exhibit significantly higher values of refractive index and optical absorption, which allowed for their identification by the commercial scanner device. The presented method thus provides fast and accurate information about the rare-earth distribution in the material volume with high resolution (≈2.7 µm) and low limit of concentration difference detection (≈0.014 at.%) compared to other techniques, which makes it a promising candidate for high throughput measurements. Mapping the distributions of various rare-earth dopants when combined within a host material is challenging, Here, a fast and precise approach to mapping rare-earth doping distribution based on a commercial UV-Vis scanner shows that dopants locally modify the optical properties of the material.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00679-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials\",\"authors\":\"Jan Hrabovsky, Miroslav Kucera, Lucie Palousova, Jakub Zazvorka, Jan Kubat, Lei Bi, Martin Veis\",\"doi\":\"10.1038/s43246-024-00679-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Doping of luminescent materials by rare-earth ions is common practice to achieve desired emission properties for a large variety of applications. As several rare-earths ions are frequently combined, it is subsequently difficult to effectively detect and control their homogeneous distribution within the host material. Here, we present a simple, rapid, large scale and precise method of rare-earth mapping using a commercial UV-Vis scanner. We discuss the influence of rare-earth distribution on the physical, optical and luminescent properties with no observable qualitative effect on photoluminescent properties and optical anisotropy. On the contrary, rare-earth-rich areas exhibit significantly higher values of refractive index and optical absorption, which allowed for their identification by the commercial scanner device. The presented method thus provides fast and accurate information about the rare-earth distribution in the material volume with high resolution (≈2.7 µm) and low limit of concentration difference detection (≈0.014 at.%) compared to other techniques, which makes it a promising candidate for high throughput measurements. Mapping the distributions of various rare-earth dopants when combined within a host material is challenging, Here, a fast and precise approach to mapping rare-earth doping distribution based on a commercial UV-Vis scanner shows that dopants locally modify the optical properties of the material.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00679-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00679-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00679-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials
Doping of luminescent materials by rare-earth ions is common practice to achieve desired emission properties for a large variety of applications. As several rare-earths ions are frequently combined, it is subsequently difficult to effectively detect and control their homogeneous distribution within the host material. Here, we present a simple, rapid, large scale and precise method of rare-earth mapping using a commercial UV-Vis scanner. We discuss the influence of rare-earth distribution on the physical, optical and luminescent properties with no observable qualitative effect on photoluminescent properties and optical anisotropy. On the contrary, rare-earth-rich areas exhibit significantly higher values of refractive index and optical absorption, which allowed for their identification by the commercial scanner device. The presented method thus provides fast and accurate information about the rare-earth distribution in the material volume with high resolution (≈2.7 µm) and low limit of concentration difference detection (≈0.014 at.%) compared to other techniques, which makes it a promising candidate for high throughput measurements. Mapping the distributions of various rare-earth dopants when combined within a host material is challenging, Here, a fast and precise approach to mapping rare-earth doping distribution based on a commercial UV-Vis scanner shows that dopants locally modify the optical properties of the material.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.