Daniele Perilli, Sonia Freddi, Michele Zanotti, Giovanni Drera, Andrea Casotto, Stefania Pagliara, Luca Schio, Luigi Sangaletti, Cristiana Di Valentin
{"title":"通过将 NiPc 与石墨烯连接,设计基于化学电阻器的高响应传感器","authors":"Daniele Perilli, Sonia Freddi, Michele Zanotti, Giovanni Drera, Andrea Casotto, Stefania Pagliara, Luca Schio, Luigi Sangaletti, Cristiana Di Valentin","doi":"10.1038/s43246-024-00693-z","DOIUrl":null,"url":null,"abstract":"Highly sensitive and selective gas-sensing materials are critical for applications ranging from environmental monitoring to breath analysis. A rational approach at the nanoscale is urgent to design next-generation sensing devices. In previous work, we unveiled interesting charge transfer channels at the interface between p-type doped graphene and a layer of nickel phthalocyanine (NiPc) molecules, which we believe could be successfully exploited in gas sensing devices. Here, we have investigated the graphene-NiPc interface’s response to adsorbed gas molecules via first-principles calculations. We focused on NH3 and NO2 as test molecules, representing electron donors and acceptors, respectively. Notably, we identified the Ni dz2 orbital as a key player in mediating the charge transfer and affecting the charge carrier density in graphene. As a proof-of-concept, we then prepared the graphene-NiPc system as a chemiresistor device and exposed it to NH3 and NO2 at room temperature. The sensing tests revealed excellent sensitivity and selectivity, along with a rapid recovery time and a remarkably low detection limit. Highly sensitive and selective gas-sensing materials are important for applications ranging from environmental monitoring to breath analysis. Here, the gas sensing response of the heterointerface between graphene and nickel phthalocyanine is investigated by first-principles calculations and tested in a chemiresistor device exposed to NH3 and NO2 at room temperature.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00693-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of highly responsive chemiresistor-based sensors by interfacing NiPc with graphene\",\"authors\":\"Daniele Perilli, Sonia Freddi, Michele Zanotti, Giovanni Drera, Andrea Casotto, Stefania Pagliara, Luca Schio, Luigi Sangaletti, Cristiana Di Valentin\",\"doi\":\"10.1038/s43246-024-00693-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly sensitive and selective gas-sensing materials are critical for applications ranging from environmental monitoring to breath analysis. A rational approach at the nanoscale is urgent to design next-generation sensing devices. In previous work, we unveiled interesting charge transfer channels at the interface between p-type doped graphene and a layer of nickel phthalocyanine (NiPc) molecules, which we believe could be successfully exploited in gas sensing devices. Here, we have investigated the graphene-NiPc interface’s response to adsorbed gas molecules via first-principles calculations. We focused on NH3 and NO2 as test molecules, representing electron donors and acceptors, respectively. Notably, we identified the Ni dz2 orbital as a key player in mediating the charge transfer and affecting the charge carrier density in graphene. As a proof-of-concept, we then prepared the graphene-NiPc system as a chemiresistor device and exposed it to NH3 and NO2 at room temperature. The sensing tests revealed excellent sensitivity and selectivity, along with a rapid recovery time and a remarkably low detection limit. Highly sensitive and selective gas-sensing materials are important for applications ranging from environmental monitoring to breath analysis. Here, the gas sensing response of the heterointerface between graphene and nickel phthalocyanine is investigated by first-principles calculations and tested in a chemiresistor device exposed to NH3 and NO2 at room temperature.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00693-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00693-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00693-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
高灵敏度和高选择性的气体传感材料对于从环境监测到呼吸分析等各种应用都至关重要。要设计下一代传感设备,迫切需要在纳米尺度上采用合理的方法。在之前的工作中,我们揭示了 p 型掺杂石墨烯和酞菁镍(NiPc)分子层界面上有趣的电荷转移通道,我们相信气体传感设备可以成功利用这些通道。在此,我们通过第一原理计算研究了石墨烯-酞菁镍分子界面对吸附气体分子的响应。我们将 NH3 和 NO2 作为测试分子,分别代表电子供体和受体。值得注意的是,我们发现 Ni dz2 轨道是介导电荷转移和影响石墨烯中电荷载流子密度的关键因素。作为概念验证,我们随后将石墨烯-NiPc 系统制备成化学电阻器装置,并在室温下将其暴露于 NH3 和 NO2 中。传感测试表明,该系统具有出色的灵敏度和选择性、快速恢复时间和极低的检测限。高灵敏度和高选择性的气体传感材料对于从环境监测到呼吸分析等各种应用都非常重要。本文通过第一原理计算研究了石墨烯与酞菁镍之间异质界面的气体传感响应,并在室温下暴露于 NH3 和 NO2 的化学电阻器装置中进行了测试。
Design of highly responsive chemiresistor-based sensors by interfacing NiPc with graphene
Highly sensitive and selective gas-sensing materials are critical for applications ranging from environmental monitoring to breath analysis. A rational approach at the nanoscale is urgent to design next-generation sensing devices. In previous work, we unveiled interesting charge transfer channels at the interface between p-type doped graphene and a layer of nickel phthalocyanine (NiPc) molecules, which we believe could be successfully exploited in gas sensing devices. Here, we have investigated the graphene-NiPc interface’s response to adsorbed gas molecules via first-principles calculations. We focused on NH3 and NO2 as test molecules, representing electron donors and acceptors, respectively. Notably, we identified the Ni dz2 orbital as a key player in mediating the charge transfer and affecting the charge carrier density in graphene. As a proof-of-concept, we then prepared the graphene-NiPc system as a chemiresistor device and exposed it to NH3 and NO2 at room temperature. The sensing tests revealed excellent sensitivity and selectivity, along with a rapid recovery time and a remarkably low detection limit. Highly sensitive and selective gas-sensing materials are important for applications ranging from environmental monitoring to breath analysis. Here, the gas sensing response of the heterointerface between graphene and nickel phthalocyanine is investigated by first-principles calculations and tested in a chemiresistor device exposed to NH3 and NO2 at room temperature.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.