评估木材涂层的抗真菌效率

IF 3.1 2区 农林科学 Q1 FORESTRY
Olena Myronycheva, Injeong Kim, Olov Karlsson, Liudmyla Kiurcheva, Peter Jacobsson, Dick Sandberg
{"title":"评估木材涂层的抗真菌效率","authors":"Olena Myronycheva,&nbsp;Injeong Kim,&nbsp;Olov Karlsson,&nbsp;Liudmyla Kiurcheva,&nbsp;Peter Jacobsson,&nbsp;Dick Sandberg","doi":"10.1007/s00226-024-01614-6","DOIUrl":null,"url":null,"abstract":"<div><p>Wood is an important construction material, but a significant problem hindering its widespread use is susceptibility to biodeterioration and biodegradation. To protect wood against degradation, a surface coating can be used, and it is important to be able to predict the ability of the coating to prevent fungal growth. The currently available standard method to determine the antifungal efficiency of a coating has two weaknesses, viz<i>.</i> no evaluation of the moisture content in the wood material, and no possibility to study antifungal effect of the coating towards an individual fungus. A new quantitative method of determining the antifungal efficiency of coatings is therefore proposed, where a coating is applied to wood and exposed to an individual fungus in a Petri dish. Six commercial water-based coatings containing synthetic biocides were studied on filter paper (EN 15457) and with the new test method on wood blocks. The results show the importance of studying the antifungal efficiency of a coating using individual fungi instead of a mixture of fungi, since individual fungi interact differently with a given biocide in the coating. The moisture content of the wood substrate during the test was affected by how the fungus was established on the coating. This new test approach shows promise in screening the antifungal efficiency of wood coatings containing preservative substances applied to wood material surfaces.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01614-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the antifungal efficiency of coatings on wood\",\"authors\":\"Olena Myronycheva,&nbsp;Injeong Kim,&nbsp;Olov Karlsson,&nbsp;Liudmyla Kiurcheva,&nbsp;Peter Jacobsson,&nbsp;Dick Sandberg\",\"doi\":\"10.1007/s00226-024-01614-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wood is an important construction material, but a significant problem hindering its widespread use is susceptibility to biodeterioration and biodegradation. To protect wood against degradation, a surface coating can be used, and it is important to be able to predict the ability of the coating to prevent fungal growth. The currently available standard method to determine the antifungal efficiency of a coating has two weaknesses, viz<i>.</i> no evaluation of the moisture content in the wood material, and no possibility to study antifungal effect of the coating towards an individual fungus. A new quantitative method of determining the antifungal efficiency of coatings is therefore proposed, where a coating is applied to wood and exposed to an individual fungus in a Petri dish. Six commercial water-based coatings containing synthetic biocides were studied on filter paper (EN 15457) and with the new test method on wood blocks. The results show the importance of studying the antifungal efficiency of a coating using individual fungi instead of a mixture of fungi, since individual fungi interact differently with a given biocide in the coating. The moisture content of the wood substrate during the test was affected by how the fungus was established on the coating. This new test approach shows promise in screening the antifungal efficiency of wood coatings containing preservative substances applied to wood material surfaces.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00226-024-01614-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01614-6\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01614-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

木材是一种重要的建筑材料,但妨碍其广泛使用的一个重要问题是容易发生生物退化和生物降解。为了防止木材降解,可以使用表面涂层,而预测涂层防止真菌生长的能力非常重要。目前可用来确定涂层抗真菌效率的标准方法有两个弱点,即无法评估木质材料中的含水量,也无法研究涂层对单个真菌的抗真菌效果。因此,我们提出了一种新的定量方法来确定涂层的抗真菌效率,即在木材上涂抹涂层,并在培养皿中接触单个真菌。我们在滤纸(EN 15457)上对六种含有合成杀菌剂的商用水基涂料进行了研究,并在木块上使用新的测试方法进行了研究。结果表明,使用单个真菌而不是真菌混合物来研究涂料的抗真菌效率非常重要,因为单个真菌与涂料中特定杀菌剂的相互作用是不同的。在测试过程中,木质基材的含水量会受到真菌在涂层上生长方式的影响。这种新的测试方法有望筛选出木质材料表面含有防腐剂的木质涂料的抗真菌效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the antifungal efficiency of coatings on wood

Wood is an important construction material, but a significant problem hindering its widespread use is susceptibility to biodeterioration and biodegradation. To protect wood against degradation, a surface coating can be used, and it is important to be able to predict the ability of the coating to prevent fungal growth. The currently available standard method to determine the antifungal efficiency of a coating has two weaknesses, viz. no evaluation of the moisture content in the wood material, and no possibility to study antifungal effect of the coating towards an individual fungus. A new quantitative method of determining the antifungal efficiency of coatings is therefore proposed, where a coating is applied to wood and exposed to an individual fungus in a Petri dish. Six commercial water-based coatings containing synthetic biocides were studied on filter paper (EN 15457) and with the new test method on wood blocks. The results show the importance of studying the antifungal efficiency of a coating using individual fungi instead of a mixture of fungi, since individual fungi interact differently with a given biocide in the coating. The moisture content of the wood substrate during the test was affected by how the fungus was established on the coating. This new test approach shows promise in screening the antifungal efficiency of wood coatings containing preservative substances applied to wood material surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信