Y8CoIn3 族中的理想无自旋轨道狄拉克半金属和多种拓扑转变

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manabu Sato, Juba Bouaziz, Shuntaro Sumita, Shingo Kobayashi, Ikuma Tateishi, Stefan Blügel, Akira Furusaki, Motoaki Hirayama
{"title":"Y8CoIn3 族中的理想无自旋轨道狄拉克半金属和多种拓扑转变","authors":"Manabu Sato, Juba Bouaziz, Shuntaro Sumita, Shingo Kobayashi, Ikuma Tateishi, Stefan Blügel, Akira Furusaki, Motoaki Hirayama","doi":"10.1038/s43246-024-00635-9","DOIUrl":null,"url":null,"abstract":"Topological semimetals, known for their intriguing properties arising from band degeneracies, have garnered significant attention. However, the discovery of a material realization and the detailed characterization of spinless Dirac semimetals have not yet been accomplished. Here, we propose from first-principles calculations that the RE8CoX3 group (RE = rare earth elements, X = Al, Ga, or In) contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in these materials, Dirac points are formed on the rotation-symmetry axis due to accidental degeneracies of two bands corresponding to different 2-dimensional irreducible representations of the C6v group. We also investigate, through first-principles calculations and effective model analysis, various phase transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to distinct topological semimetallic phases such as nonmagnetic linked-nodal-line and Weyl semimetals (characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals. Band degeneracies at the Fermi level in topological semimetals are sources of intriguing interference effects between electronic states around the degeneracy points. Here, the RE8CoX3 compounds, with RE = rare-earth and X = Al, Ga, or In, are proposed as realizations of ideal spinless Dirac semimetals hosting the fourfold degenerate band-crossing points without the spin degrees of freedom.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00635-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family\",\"authors\":\"Manabu Sato, Juba Bouaziz, Shuntaro Sumita, Shingo Kobayashi, Ikuma Tateishi, Stefan Blügel, Akira Furusaki, Motoaki Hirayama\",\"doi\":\"10.1038/s43246-024-00635-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological semimetals, known for their intriguing properties arising from band degeneracies, have garnered significant attention. However, the discovery of a material realization and the detailed characterization of spinless Dirac semimetals have not yet been accomplished. Here, we propose from first-principles calculations that the RE8CoX3 group (RE = rare earth elements, X = Al, Ga, or In) contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in these materials, Dirac points are formed on the rotation-symmetry axis due to accidental degeneracies of two bands corresponding to different 2-dimensional irreducible representations of the C6v group. We also investigate, through first-principles calculations and effective model analysis, various phase transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to distinct topological semimetallic phases such as nonmagnetic linked-nodal-line and Weyl semimetals (characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals. Band degeneracies at the Fermi level in topological semimetals are sources of intriguing interference effects between electronic states around the degeneracy points. Here, the RE8CoX3 compounds, with RE = rare-earth and X = Al, Ga, or In, are proposed as realizations of ideal spinless Dirac semimetals hosting the fourfold degenerate band-crossing points without the spin degrees of freedom.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00635-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00635-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00635-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑半金属因其因带变性而产生的奇妙特性而闻名,并已引起了广泛关注。然而,无自旋狄拉克半金属材料的发现和详细表征尚未完成。在此,我们通过第一性原理计算提出 RE8CoX3 族(RE = 稀土元素,X = Al、Ga 或 In)包含理想的无自旋狄拉克半金属,其费米面是四倍退化带交叉点(不包括自旋退化)。尽管这些材料缺乏空间反转对称性,但由于与 C6v 群的不同 2 维不可还原表示相对应的两个带的意外退化,在旋转对称轴上形成了狄拉克点。我们还通过第一性原理计算和有效模型分析,研究了由晶格畸变或元素置换引起的从狄拉克半金属相到不同拓扑半金属相的各种相变,如非磁性链节线半金属和韦尔半金属(以第二斯蒂费尔-惠特尼类为特征)以及铁磁性韦尔半金属。拓扑半金属费米级的带退变性是退变点周围电子态之间有趣的干涉效应的来源。这里提出的 RE8CoX3 化合物(RE = 稀土,X = 铝、镓或铟)是理想的无自旋狄拉克半金属的现实化,其中包含没有自旋自由度的四重退变带交叉点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family

Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family
Topological semimetals, known for their intriguing properties arising from band degeneracies, have garnered significant attention. However, the discovery of a material realization and the detailed characterization of spinless Dirac semimetals have not yet been accomplished. Here, we propose from first-principles calculations that the RE8CoX3 group (RE = rare earth elements, X = Al, Ga, or In) contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in these materials, Dirac points are formed on the rotation-symmetry axis due to accidental degeneracies of two bands corresponding to different 2-dimensional irreducible representations of the C6v group. We also investigate, through first-principles calculations and effective model analysis, various phase transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to distinct topological semimetallic phases such as nonmagnetic linked-nodal-line and Weyl semimetals (characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals. Band degeneracies at the Fermi level in topological semimetals are sources of intriguing interference effects between electronic states around the degeneracy points. Here, the RE8CoX3 compounds, with RE = rare-earth and X = Al, Ga, or In, are proposed as realizations of ideal spinless Dirac semimetals hosting the fourfold degenerate band-crossing points without the spin degrees of freedom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信