{"title":"激光粉末床熔融技术制造的 Ti-13Nb-13Zr-2Ta 合金的微观结构演变和高强度-延展性协同作用","authors":"Libo Zhou, Biao Peng, Jian Chen, Yanjie Ren, Yan Niu, Wei Qiu, Jianzhong Tang, Zhou Li, Wei Chen, Weiying Huang, Cong Li","doi":"10.1007/s40195-024-01763-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work systematically investigates the densification, microstructure evolution and the attainment of high strength-ductility in Ti-13Nb-13Zr-2Ta alloy processed by laser powder bed fusion (LPBF). A narrow and viable process window (<i>P</i><sub>laser power</sub> = 175 W, <i>v</i><sub>scanning speed</sub> = 1000 mm/s, <i>h</i><sub>scanning distance</sub> = 0.1 mm and <i>d</i><sub>layer thickness</sub> = 0.03 mm) was accordingly determined and the relative density of Ti-13Nb-13Zr-2Ta alloy reaches 99.76%. The depth of molten pool increases gradually with the increase of energy density, and the relationship between the depth of molten pool and energy density has been quantitatively described. Three types of <i>α</i>′ martensites with average grain width less than 3 μm can be observed in the LPBF-fabricated Ti-13Nb-13Zr-2Ta alloys, attributed to the significantly high cooling rate and remelting process. The fine grain size, high density dislocations, nanotwins, ordered oxygen complexes and <i>α</i> + <i>α</i>″ heterostructure all contributed to the high strength (1037.75 ± 25.18 MPa) and ductility (20.32% ± 1.39%) of LPBF-fabricated Ti-13Nb-13Zr-2Ta alloy in this work.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2029 - 2044"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure Evolution and High Strength-Ductility Synergy of Ti-13Nb-13Zr-2Ta Alloy Fabricated by Laser Powder Bed Fusion\",\"authors\":\"Libo Zhou, Biao Peng, Jian Chen, Yanjie Ren, Yan Niu, Wei Qiu, Jianzhong Tang, Zhou Li, Wei Chen, Weiying Huang, Cong Li\",\"doi\":\"10.1007/s40195-024-01763-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work systematically investigates the densification, microstructure evolution and the attainment of high strength-ductility in Ti-13Nb-13Zr-2Ta alloy processed by laser powder bed fusion (LPBF). A narrow and viable process window (<i>P</i><sub>laser power</sub> = 175 W, <i>v</i><sub>scanning speed</sub> = 1000 mm/s, <i>h</i><sub>scanning distance</sub> = 0.1 mm and <i>d</i><sub>layer thickness</sub> = 0.03 mm) was accordingly determined and the relative density of Ti-13Nb-13Zr-2Ta alloy reaches 99.76%. The depth of molten pool increases gradually with the increase of energy density, and the relationship between the depth of molten pool and energy density has been quantitatively described. Three types of <i>α</i>′ martensites with average grain width less than 3 μm can be observed in the LPBF-fabricated Ti-13Nb-13Zr-2Ta alloys, attributed to the significantly high cooling rate and remelting process. The fine grain size, high density dislocations, nanotwins, ordered oxygen complexes and <i>α</i> + <i>α</i>″ heterostructure all contributed to the high strength (1037.75 ± 25.18 MPa) and ductility (20.32% ± 1.39%) of LPBF-fabricated Ti-13Nb-13Zr-2Ta alloy in this work.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":\"37 12\",\"pages\":\"2029 - 2044\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01763-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01763-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Microstructure Evolution and High Strength-Ductility Synergy of Ti-13Nb-13Zr-2Ta Alloy Fabricated by Laser Powder Bed Fusion
This work systematically investigates the densification, microstructure evolution and the attainment of high strength-ductility in Ti-13Nb-13Zr-2Ta alloy processed by laser powder bed fusion (LPBF). A narrow and viable process window (Plaser power = 175 W, vscanning speed = 1000 mm/s, hscanning distance = 0.1 mm and dlayer thickness = 0.03 mm) was accordingly determined and the relative density of Ti-13Nb-13Zr-2Ta alloy reaches 99.76%. The depth of molten pool increases gradually with the increase of energy density, and the relationship between the depth of molten pool and energy density has been quantitatively described. Three types of α′ martensites with average grain width less than 3 μm can be observed in the LPBF-fabricated Ti-13Nb-13Zr-2Ta alloys, attributed to the significantly high cooling rate and remelting process. The fine grain size, high density dislocations, nanotwins, ordered oxygen complexes and α + α″ heterostructure all contributed to the high strength (1037.75 ± 25.18 MPa) and ductility (20.32% ± 1.39%) of LPBF-fabricated Ti-13Nb-13Zr-2Ta alloy in this work.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.