二氧化硅薄膜中配位转变诱发的热导率显著增强

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingyang Kong, Zhichun Liu, Haigang Wang, Dezhi Xu, Hanbin Wang, Zhipeng Zhao, Zhengxing Huang, Junsheng Liang
{"title":"二氧化硅薄膜中配位转变诱发的热导率显著增强","authors":"Mingyang Kong,&nbsp;Zhichun Liu,&nbsp;Haigang Wang,&nbsp;Dezhi Xu,&nbsp;Hanbin Wang,&nbsp;Zhipeng Zhao,&nbsp;Zhengxing Huang,&nbsp;Junsheng Liang","doi":"10.1007/s10853-024-10391-3","DOIUrl":null,"url":null,"abstract":"<p>The heat transfer in SiO<sub>2</sub> is mainly dominated by phonons, but the void defects and boundary effects in the films cause strong scattering of phonons, resulting in a low thermal conductivity. Herein, we report the SiO<sub>2</sub> thin films with prominently enhanced thermal conductivity after high-temperature annealing. Through combined experiments and non-equilibrium molecular dynamics simulation, we reveal the improvement of thermal conductivity that is originally attributed to coordination transition during the high-temperature annealing. Analysis indicates that a more ordered atom structure and denser grain boundaries could derive from the coordination transition, resulting in the crystallization of grains and defect mending. These behaviors induce a reduction of phonons scattering and increase in mean free path, which lead to nearly twofold enhance in the thermal conductivity to 2.66 Wm<sup>−1</sup> K<sup>−1</sup>.</p>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 43","pages":"20325 - 20334"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarkable enhancement of thermal conductivity induced by coordination transition in SiO2 thin films\",\"authors\":\"Mingyang Kong,&nbsp;Zhichun Liu,&nbsp;Haigang Wang,&nbsp;Dezhi Xu,&nbsp;Hanbin Wang,&nbsp;Zhipeng Zhao,&nbsp;Zhengxing Huang,&nbsp;Junsheng Liang\",\"doi\":\"10.1007/s10853-024-10391-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The heat transfer in SiO<sub>2</sub> is mainly dominated by phonons, but the void defects and boundary effects in the films cause strong scattering of phonons, resulting in a low thermal conductivity. Herein, we report the SiO<sub>2</sub> thin films with prominently enhanced thermal conductivity after high-temperature annealing. Through combined experiments and non-equilibrium molecular dynamics simulation, we reveal the improvement of thermal conductivity that is originally attributed to coordination transition during the high-temperature annealing. Analysis indicates that a more ordered atom structure and denser grain boundaries could derive from the coordination transition, resulting in the crystallization of grains and defect mending. These behaviors induce a reduction of phonons scattering and increase in mean free path, which lead to nearly twofold enhance in the thermal conductivity to 2.66 Wm<sup>−1</sup> K<sup>−1</sup>.</p>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 43\",\"pages\":\"20325 - 20334\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10391-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10391-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化硅中的传热主要由声子主导,但薄膜中的空隙缺陷和边界效应会引起声子的强烈散射,从而导致热导率较低。在此,我们报告了经过高温退火后热导率显著增强的二氧化硅薄膜。通过结合实验和非平衡分子动力学模拟,我们揭示了热导率的提高最初归因于高温退火过程中的配位转变。分析表明,更有序的原子结构和更致密的晶界可能源于配位转变,从而导致晶粒结晶和缺陷修补。这些行为导致声子散射减少和平均自由路径增加,从而使热导率提高了近两倍,达到 2.66 Wm-1 K-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarkable enhancement of thermal conductivity induced by coordination transition in SiO2 thin films

The heat transfer in SiO2 is mainly dominated by phonons, but the void defects and boundary effects in the films cause strong scattering of phonons, resulting in a low thermal conductivity. Herein, we report the SiO2 thin films with prominently enhanced thermal conductivity after high-temperature annealing. Through combined experiments and non-equilibrium molecular dynamics simulation, we reveal the improvement of thermal conductivity that is originally attributed to coordination transition during the high-temperature annealing. Analysis indicates that a more ordered atom structure and denser grain boundaries could derive from the coordination transition, resulting in the crystallization of grains and defect mending. These behaviors induce a reduction of phonons scattering and increase in mean free path, which lead to nearly twofold enhance in the thermal conductivity to 2.66 Wm−1 K−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信