{"title":"研究未处理和处理过的稻草对炭黑填充丁苯橡胶复合材料不同性能的影响","authors":"Eyad Sayed Abdallah Khalaf","doi":"10.1007/s42464-024-00269-z","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive investigations have been performed on Egyptian rice straw (RS) fibre residues to be employed as a supplementary reinforcement material in polymer composites. In this study, two identical groups based on carbon black (CB) filled styrene butadiene rubber (SBR) vulcanisates were prepared by incorporating different proportions (10–50 phr) of treated and untreated rice straw (TRS/ URS) in the SBR composites to examine their effects on some of the demanded properties in rubber applications. Maleic anhydride (MA), as a coupling agent, was added to improve the interfacial bonding between the hydrophilic RS natural fibre and the hydrophobic SBR matrix. The TRS and URS were selectively grinded through a grinding machine to obtain RS fine powder with a selective grain size distribution ranging from about 20–180 μm. Some important physico-mechanical properties of the rubber vulcanisates were studied. The prepared samples were analysed by using X- ray diffractometer (XRD) and scanning electron microscopy (SEM). The tensile strength (TS), modulus (M100) and hardness values of TRS filled composites were almost superior compared to the URS ones, and 20 phr of TRS was found to be the optimum filling in SBR vulcanisates and this was obviously revealed through all the mechanical properties results as well as in the percentage swelling findings. The SEM analysis indicates that the presence of MA increases the interfacial interaction between SBR, and the alkali treated rice straw fibres, as well it was found to be in complete agreement with the TS findings. The XRD analysis reveals that the alkaline pretreatment of RS fibres was found to yield a higher crystallinity index for the SBR vulcanisates. The results indicate the potential of using TRS as filler in the rubber industry for cost reduction and raising the environmental credentials of the product.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the effect of untreated and treated rice straw on different properties of carbon black filled styrene-butadiene rubber composites\",\"authors\":\"Eyad Sayed Abdallah Khalaf\",\"doi\":\"10.1007/s42464-024-00269-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extensive investigations have been performed on Egyptian rice straw (RS) fibre residues to be employed as a supplementary reinforcement material in polymer composites. In this study, two identical groups based on carbon black (CB) filled styrene butadiene rubber (SBR) vulcanisates were prepared by incorporating different proportions (10–50 phr) of treated and untreated rice straw (TRS/ URS) in the SBR composites to examine their effects on some of the demanded properties in rubber applications. Maleic anhydride (MA), as a coupling agent, was added to improve the interfacial bonding between the hydrophilic RS natural fibre and the hydrophobic SBR matrix. The TRS and URS were selectively grinded through a grinding machine to obtain RS fine powder with a selective grain size distribution ranging from about 20–180 μm. Some important physico-mechanical properties of the rubber vulcanisates were studied. The prepared samples were analysed by using X- ray diffractometer (XRD) and scanning electron microscopy (SEM). The tensile strength (TS), modulus (M100) and hardness values of TRS filled composites were almost superior compared to the URS ones, and 20 phr of TRS was found to be the optimum filling in SBR vulcanisates and this was obviously revealed through all the mechanical properties results as well as in the percentage swelling findings. The SEM analysis indicates that the presence of MA increases the interfacial interaction between SBR, and the alkali treated rice straw fibres, as well it was found to be in complete agreement with the TS findings. The XRD analysis reveals that the alkaline pretreatment of RS fibres was found to yield a higher crystallinity index for the SBR vulcanisates. The results indicate the potential of using TRS as filler in the rubber industry for cost reduction and raising the environmental credentials of the product.</p></div>\",\"PeriodicalId\":662,\"journal\":{\"name\":\"Journal of Rubber Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rubber Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42464-024-00269-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00269-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Studying the effect of untreated and treated rice straw on different properties of carbon black filled styrene-butadiene rubber composites
Extensive investigations have been performed on Egyptian rice straw (RS) fibre residues to be employed as a supplementary reinforcement material in polymer composites. In this study, two identical groups based on carbon black (CB) filled styrene butadiene rubber (SBR) vulcanisates were prepared by incorporating different proportions (10–50 phr) of treated and untreated rice straw (TRS/ URS) in the SBR composites to examine their effects on some of the demanded properties in rubber applications. Maleic anhydride (MA), as a coupling agent, was added to improve the interfacial bonding between the hydrophilic RS natural fibre and the hydrophobic SBR matrix. The TRS and URS were selectively grinded through a grinding machine to obtain RS fine powder with a selective grain size distribution ranging from about 20–180 μm. Some important physico-mechanical properties of the rubber vulcanisates were studied. The prepared samples were analysed by using X- ray diffractometer (XRD) and scanning electron microscopy (SEM). The tensile strength (TS), modulus (M100) and hardness values of TRS filled composites were almost superior compared to the URS ones, and 20 phr of TRS was found to be the optimum filling in SBR vulcanisates and this was obviously revealed through all the mechanical properties results as well as in the percentage swelling findings. The SEM analysis indicates that the presence of MA increases the interfacial interaction between SBR, and the alkali treated rice straw fibres, as well it was found to be in complete agreement with the TS findings. The XRD analysis reveals that the alkaline pretreatment of RS fibres was found to yield a higher crystallinity index for the SBR vulcanisates. The results indicate the potential of using TRS as filler in the rubber industry for cost reduction and raising the environmental credentials of the product.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.