Roslim Ramli, Ai Bao Chai, Shamsul Kamaruddin, Jee Hou Ho, Fatimah Rubaizah Mohd. Rasdi, Davide S. A. De Focatiis, Siew Kooi Ong, Robert Thomas Bachmann
{"title":"油棕树干生物炭作为填料对脱蛋白和环氧化天然橡胶乳胶泡沫物理和机械性能的影响","authors":"Roslim Ramli, Ai Bao Chai, Shamsul Kamaruddin, Jee Hou Ho, Fatimah Rubaizah Mohd. Rasdi, Davide S. A. De Focatiis, Siew Kooi Ong, Robert Thomas Bachmann","doi":"10.1007/s42464-024-00283-1","DOIUrl":null,"url":null,"abstract":"<div><p>Oil palm trunk biochar (OPTB) serves as a flame-retardant additive aimed at enhancing the thermal stability of natural rubber (NR) latex foam. This study explores whether OPTB affects the physical and mechanical properties of specialty NR (SpNR) latex foam, specifically deproteinised NR (DPNR) latex foam and epoxidised NR (ENR) latex foam. The results indicate that the addition of OPTB up to 8 phr insignificantly increases the density of DPNR and ENR latex foams, but significantly at 16 phr and 24 phr (p < 0.05). Shore F hardness also shows a significant increase with OPTB loading (p < 0.05), while volume shrinkage decreases with higher OPTB loading (p < 0.05), thereby enhancing foam dimensional stability. The study also found that the addition of OPTB reduced the elasticity of both DPNR and ENR latex foams, resulting in higher hysteresis loss ratios as OPTB loading increased from 8 to 16 phr and 24 phr. The highest observed hysteresis loss ratio was 0.32 in DPNR latex foam loaded with 24 phr of OPTB. Additionally, OPTB loading up to 24 phr in DPNR latex foam decreased its rebound resilience from 66 to 55% and increased its vibration-damping ratio from 0.14 to 0.24. This implies that the addition of OPTB to SpNR latex foam alters its physical and mechanical properties, making it ideal for applications requiring good vibration damping and impact absorption, such as seat cushions and headliners for vehicles.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 4","pages":"623 - 637"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of oil palm trunk biochar as filler on physical and mechanical properties of deproteinised and epoxidised natural rubber latex foam\",\"authors\":\"Roslim Ramli, Ai Bao Chai, Shamsul Kamaruddin, Jee Hou Ho, Fatimah Rubaizah Mohd. Rasdi, Davide S. A. De Focatiis, Siew Kooi Ong, Robert Thomas Bachmann\",\"doi\":\"10.1007/s42464-024-00283-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oil palm trunk biochar (OPTB) serves as a flame-retardant additive aimed at enhancing the thermal stability of natural rubber (NR) latex foam. This study explores whether OPTB affects the physical and mechanical properties of specialty NR (SpNR) latex foam, specifically deproteinised NR (DPNR) latex foam and epoxidised NR (ENR) latex foam. The results indicate that the addition of OPTB up to 8 phr insignificantly increases the density of DPNR and ENR latex foams, but significantly at 16 phr and 24 phr (p < 0.05). Shore F hardness also shows a significant increase with OPTB loading (p < 0.05), while volume shrinkage decreases with higher OPTB loading (p < 0.05), thereby enhancing foam dimensional stability. The study also found that the addition of OPTB reduced the elasticity of both DPNR and ENR latex foams, resulting in higher hysteresis loss ratios as OPTB loading increased from 8 to 16 phr and 24 phr. The highest observed hysteresis loss ratio was 0.32 in DPNR latex foam loaded with 24 phr of OPTB. Additionally, OPTB loading up to 24 phr in DPNR latex foam decreased its rebound resilience from 66 to 55% and increased its vibration-damping ratio from 0.14 to 0.24. This implies that the addition of OPTB to SpNR latex foam alters its physical and mechanical properties, making it ideal for applications requiring good vibration damping and impact absorption, such as seat cushions and headliners for vehicles.</p></div>\",\"PeriodicalId\":662,\"journal\":{\"name\":\"Journal of Rubber Research\",\"volume\":\"27 4\",\"pages\":\"623 - 637\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rubber Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42464-024-00283-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00283-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effects of oil palm trunk biochar as filler on physical and mechanical properties of deproteinised and epoxidised natural rubber latex foam
Oil palm trunk biochar (OPTB) serves as a flame-retardant additive aimed at enhancing the thermal stability of natural rubber (NR) latex foam. This study explores whether OPTB affects the physical and mechanical properties of specialty NR (SpNR) latex foam, specifically deproteinised NR (DPNR) latex foam and epoxidised NR (ENR) latex foam. The results indicate that the addition of OPTB up to 8 phr insignificantly increases the density of DPNR and ENR latex foams, but significantly at 16 phr and 24 phr (p < 0.05). Shore F hardness also shows a significant increase with OPTB loading (p < 0.05), while volume shrinkage decreases with higher OPTB loading (p < 0.05), thereby enhancing foam dimensional stability. The study also found that the addition of OPTB reduced the elasticity of both DPNR and ENR latex foams, resulting in higher hysteresis loss ratios as OPTB loading increased from 8 to 16 phr and 24 phr. The highest observed hysteresis loss ratio was 0.32 in DPNR latex foam loaded with 24 phr of OPTB. Additionally, OPTB loading up to 24 phr in DPNR latex foam decreased its rebound resilience from 66 to 55% and increased its vibration-damping ratio from 0.14 to 0.24. This implies that the addition of OPTB to SpNR latex foam alters its physical and mechanical properties, making it ideal for applications requiring good vibration damping and impact absorption, such as seat cushions and headliners for vehicles.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.