{"title":"通过添加纳米颗粒和调整热压温度实现散装铝的双倍强度","authors":"Ke Zhao, Zhongying Duan, Jinling Liu, Linan An","doi":"10.1007/s40195-024-01771-4","DOIUrl":null,"url":null,"abstract":"<div><p>It is extremely difficult to strengthen bulk aluminum (Al) by twins, due to its high stacking fault energy under standard loading conditions. In this study, a simple yet effective solution was proposed for introducing twins to strengthen bulk Al. The method involves the addition of nanoparticles with high volume fraction combined with the tailoring of sintering temperature toward the melting point of Al during hot pressing. Sintering temperature plays an important role in forming twins in bulk Al containing high content nanoparticles. The twin content increases with increasing sintering temperature in the range of 590–640 °C. At sintering temperature of 640 °C, the twin content reaches 17%, enabling the significant improvement in the yield strength of the bulk Al from 251 to 400 MPa, compared with the sample with few or no twins. The twin strengthening may serve as a major strengthening mechanism for bulk Al, and its strengthening contribution is comparable to the dominant Orowan strengthening resulting from the added nanoparticles.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2083 - 2093"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Twin Strengthening in Bulk Aluminum via Adding Nanoparticles Combined with Tailoring Hot Pressing Temperature\",\"authors\":\"Ke Zhao, Zhongying Duan, Jinling Liu, Linan An\",\"doi\":\"10.1007/s40195-024-01771-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is extremely difficult to strengthen bulk aluminum (Al) by twins, due to its high stacking fault energy under standard loading conditions. In this study, a simple yet effective solution was proposed for introducing twins to strengthen bulk Al. The method involves the addition of nanoparticles with high volume fraction combined with the tailoring of sintering temperature toward the melting point of Al during hot pressing. Sintering temperature plays an important role in forming twins in bulk Al containing high content nanoparticles. The twin content increases with increasing sintering temperature in the range of 590–640 °C. At sintering temperature of 640 °C, the twin content reaches 17%, enabling the significant improvement in the yield strength of the bulk Al from 251 to 400 MPa, compared with the sample with few or no twins. The twin strengthening may serve as a major strengthening mechanism for bulk Al, and its strengthening contribution is comparable to the dominant Orowan strengthening resulting from the added nanoparticles.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":\"37 12\",\"pages\":\"2083 - 2093\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01771-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01771-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Achieving Twin Strengthening in Bulk Aluminum via Adding Nanoparticles Combined with Tailoring Hot Pressing Temperature
It is extremely difficult to strengthen bulk aluminum (Al) by twins, due to its high stacking fault energy under standard loading conditions. In this study, a simple yet effective solution was proposed for introducing twins to strengthen bulk Al. The method involves the addition of nanoparticles with high volume fraction combined with the tailoring of sintering temperature toward the melting point of Al during hot pressing. Sintering temperature plays an important role in forming twins in bulk Al containing high content nanoparticles. The twin content increases with increasing sintering temperature in the range of 590–640 °C. At sintering temperature of 640 °C, the twin content reaches 17%, enabling the significant improvement in the yield strength of the bulk Al from 251 to 400 MPa, compared with the sample with few or no twins. The twin strengthening may serve as a major strengthening mechanism for bulk Al, and its strengthening contribution is comparable to the dominant Orowan strengthening resulting from the added nanoparticles.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.