高安全性有机 PVDF 涂层二氧化硅气凝胶锂电池隔膜

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kun He, Jiqiang Wu, Jiling Song, Guangping Guo, Jianbing Guo
{"title":"高安全性有机 PVDF 涂层二氧化硅气凝胶锂电池隔膜","authors":"Kun He,&nbsp;Jiqiang Wu,&nbsp;Jiling Song,&nbsp;Guangping Guo,&nbsp;Jianbing Guo","doi":"10.1007/s10853-024-10360-w","DOIUrl":null,"url":null,"abstract":"<div><p>Silica aerogel membranes are renowned for their high porosity and superior thermal insulation capabilities. However, they are known to have limited mechanical strength and tend to shed surface particles easily. To address these drawbacks, a novel PVDF/SiO<sub>2</sub>/PVDF(PSP) composite membrane with a three-layered structure has been successfully fabricated by coating the surface of silica aerogel membranes with polyvinylidene fluoride (PVDF) using a straightforward and effective coating technique. This innovative approach not only effectively addresses the issue of particle shedding but also endows the silica aerogel membrane with organic functionality. The resulting PSP membranes offer significant improvements over traditional polyolefin separators, including higher porosity, enhanced electrolyte affinity, and superior thermal dimensional stability. These membranes boast an impressive ionic conductivity of 1.405 mS/cm and a lithium-ion transference number of 0.550. Moreover, when incorporated into a LiFePO<sub>4</sub>-based coin battery, the PSP membranes deliver a remarkable discharge-specific capacity of 143.5 mAh/g and an impressive capacity retention rate of 93.7% after undergoing 200 charge/discharge cycles at a rate of 0.5C.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 43","pages":"20364 - 20380"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-security organic PVDF-coated SiO2 aerogel lithium battery separator\",\"authors\":\"Kun He,&nbsp;Jiqiang Wu,&nbsp;Jiling Song,&nbsp;Guangping Guo,&nbsp;Jianbing Guo\",\"doi\":\"10.1007/s10853-024-10360-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silica aerogel membranes are renowned for their high porosity and superior thermal insulation capabilities. However, they are known to have limited mechanical strength and tend to shed surface particles easily. To address these drawbacks, a novel PVDF/SiO<sub>2</sub>/PVDF(PSP) composite membrane with a three-layered structure has been successfully fabricated by coating the surface of silica aerogel membranes with polyvinylidene fluoride (PVDF) using a straightforward and effective coating technique. This innovative approach not only effectively addresses the issue of particle shedding but also endows the silica aerogel membrane with organic functionality. The resulting PSP membranes offer significant improvements over traditional polyolefin separators, including higher porosity, enhanced electrolyte affinity, and superior thermal dimensional stability. These membranes boast an impressive ionic conductivity of 1.405 mS/cm and a lithium-ion transference number of 0.550. Moreover, when incorporated into a LiFePO<sub>4</sub>-based coin battery, the PSP membranes deliver a remarkable discharge-specific capacity of 143.5 mAh/g and an impressive capacity retention rate of 93.7% after undergoing 200 charge/discharge cycles at a rate of 0.5C.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 43\",\"pages\":\"20364 - 20380\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10360-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10360-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化硅气凝胶膜以其高孔隙率和出色的隔热能力而闻名。然而,众所周知,它们的机械强度有限,而且容易脱落表面颗粒。为了解决这些缺点,我们采用一种简单有效的涂覆技术,在二氧化硅气凝胶膜表面涂覆聚偏二氟乙烯(PVDF),成功地制造出了一种新型三层结构的 PVDF/SiO2/PVDF(PSP) 复合膜。这种创新方法不仅有效解决了颗粒脱落问题,还赋予了二氧化硅气凝胶膜有机功能。与传统的聚烯烃分离器相比,PSP 膜具有显著的改进,包括更高的孔隙率、更强的电解质亲和性和卓越的热尺寸稳定性。这些膜的离子电导率高达 1.405 mS/cm,锂离子转移率为 0.550。此外,当把 PSP 膜放入以磷酸铁锂为基础的纽扣电池中时,在以 0.5C 的速率进行 200 次充电/放电循环后,其放电特定容量为 143.5 mAh/g,容量保持率为 93.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-security organic PVDF-coated SiO2 aerogel lithium battery separator

Silica aerogel membranes are renowned for their high porosity and superior thermal insulation capabilities. However, they are known to have limited mechanical strength and tend to shed surface particles easily. To address these drawbacks, a novel PVDF/SiO2/PVDF(PSP) composite membrane with a three-layered structure has been successfully fabricated by coating the surface of silica aerogel membranes with polyvinylidene fluoride (PVDF) using a straightforward and effective coating technique. This innovative approach not only effectively addresses the issue of particle shedding but also endows the silica aerogel membrane with organic functionality. The resulting PSP membranes offer significant improvements over traditional polyolefin separators, including higher porosity, enhanced electrolyte affinity, and superior thermal dimensional stability. These membranes boast an impressive ionic conductivity of 1.405 mS/cm and a lithium-ion transference number of 0.550. Moreover, when incorporated into a LiFePO4-based coin battery, the PSP membranes deliver a remarkable discharge-specific capacity of 143.5 mAh/g and an impressive capacity retention rate of 93.7% after undergoing 200 charge/discharge cycles at a rate of 0.5C.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信