{"title":"平衡能量收集传感器网络的能量保护和性能","authors":"Jernej Hribar;Ryoichi Shinkuma;Kuon Akiyama;George Iosifidis;Ivana Dusparic","doi":"10.1109/JSEN.2024.3469539","DOIUrl":null,"url":null,"abstract":"The development of environmentally friendly, green communications is at the forefront of designing future Internet of Things (IoT) networks, although many opportunities to improve energy conservation from energy-harvesting (EH) sensors remain unexplored. Ubiquitous computing power, available in the form of cloudlets, enables the processing of the collected observations at the network edge. Often, the information that the Artificial Intelligence of Things (AIoT) application obtains by processing observations from one sensor can also be obtained by processing observations from another sensor. Consequently, a sensor can take advantage of the correlation between processed observations to avoid unnecessary transmissions and save energy. For example, when two cameras monitoring the same intersection detect the same vehicles, the system can recognize this overlap and reduce redundant data transmissions. This approach allows the network to conserve energy while still ensuring accurate vehicle detection, thereby maintaining the overall performance of the AIoT task. In this article, we consider such a system and develop a novel solution named balancing energy efficiency in sensor networks with multiagent reinforcement learning (BEES-MARL). Our proposed solution is capable of taking advantage of correlations in a system with multiple EH-powered sensors observing the same scene and transmitting their observations to a cloudlet. We evaluate the proposed solution in two data-driven use cases to verify its benefits and in a general setting to demonstrate scalability. Our solution improves task performance, measured by recall, by up to 16% over a heuristic approach, while minimizing latency and preventing outages.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"38352-38364"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing Energy Preservation and Performance in Energy-Harvesting Sensor Networks\",\"authors\":\"Jernej Hribar;Ryoichi Shinkuma;Kuon Akiyama;George Iosifidis;Ivana Dusparic\",\"doi\":\"10.1109/JSEN.2024.3469539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of environmentally friendly, green communications is at the forefront of designing future Internet of Things (IoT) networks, although many opportunities to improve energy conservation from energy-harvesting (EH) sensors remain unexplored. Ubiquitous computing power, available in the form of cloudlets, enables the processing of the collected observations at the network edge. Often, the information that the Artificial Intelligence of Things (AIoT) application obtains by processing observations from one sensor can also be obtained by processing observations from another sensor. Consequently, a sensor can take advantage of the correlation between processed observations to avoid unnecessary transmissions and save energy. For example, when two cameras monitoring the same intersection detect the same vehicles, the system can recognize this overlap and reduce redundant data transmissions. This approach allows the network to conserve energy while still ensuring accurate vehicle detection, thereby maintaining the overall performance of the AIoT task. In this article, we consider such a system and develop a novel solution named balancing energy efficiency in sensor networks with multiagent reinforcement learning (BEES-MARL). Our proposed solution is capable of taking advantage of correlations in a system with multiple EH-powered sensors observing the same scene and transmitting their observations to a cloudlet. We evaluate the proposed solution in two data-driven use cases to verify its benefits and in a general setting to demonstrate scalability. Our solution improves task performance, measured by recall, by up to 16% over a heuristic approach, while minimizing latency and preventing outages.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"38352-38364\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704998/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10704998/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Balancing Energy Preservation and Performance in Energy-Harvesting Sensor Networks
The development of environmentally friendly, green communications is at the forefront of designing future Internet of Things (IoT) networks, although many opportunities to improve energy conservation from energy-harvesting (EH) sensors remain unexplored. Ubiquitous computing power, available in the form of cloudlets, enables the processing of the collected observations at the network edge. Often, the information that the Artificial Intelligence of Things (AIoT) application obtains by processing observations from one sensor can also be obtained by processing observations from another sensor. Consequently, a sensor can take advantage of the correlation between processed observations to avoid unnecessary transmissions and save energy. For example, when two cameras monitoring the same intersection detect the same vehicles, the system can recognize this overlap and reduce redundant data transmissions. This approach allows the network to conserve energy while still ensuring accurate vehicle detection, thereby maintaining the overall performance of the AIoT task. In this article, we consider such a system and develop a novel solution named balancing energy efficiency in sensor networks with multiagent reinforcement learning (BEES-MARL). Our proposed solution is capable of taking advantage of correlations in a system with multiple EH-powered sensors observing the same scene and transmitting their observations to a cloudlet. We evaluate the proposed solution in two data-driven use cases to verify its benefits and in a general setting to demonstrate scalability. Our solution improves task performance, measured by recall, by up to 16% over a heuristic approach, while minimizing latency and preventing outages.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice