力控非全局移动机器人的安全关键稳定技术

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Tianyu Han;Bo Wang
{"title":"力控非全局移动机器人的安全关键稳定技术","authors":"Tianyu Han;Bo Wang","doi":"10.1109/LCSYS.2024.3492999","DOIUrl":null,"url":null,"abstract":"We present a safety-critical controller for the problem of stabilization for force-controlled nonholonomic mobile robots. The proposed control law is based on the constructions of control Lyapunov functions (CLFs) and control barrier functions (CBFs) for cascaded systems. To address nonholonomicity, we design the nominal controller that guarantees global asymptotic stability and local exponential stability for the closed-loop system in polar coordinates and construct a strict Lyapunov function valid on any compact sets. Furthermore, we present a procedure for constructing CBFs for cascaded systems, utilizing the CBF of the kinematic model through integrator backstepping. Quadratic programming is employed to combine CLFs and CBFs to integrate both stability and safety in the closed loop. The proposed control law is time-invariant, continuous along trajectories, and easy to implement. Our main results guarantee both safety and local asymptotic stability for the closed-loop system.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2469-2474"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety-Critical Stabilization of Force-Controlled Nonholonomic Mobile Robots\",\"authors\":\"Tianyu Han;Bo Wang\",\"doi\":\"10.1109/LCSYS.2024.3492999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a safety-critical controller for the problem of stabilization for force-controlled nonholonomic mobile robots. The proposed control law is based on the constructions of control Lyapunov functions (CLFs) and control barrier functions (CBFs) for cascaded systems. To address nonholonomicity, we design the nominal controller that guarantees global asymptotic stability and local exponential stability for the closed-loop system in polar coordinates and construct a strict Lyapunov function valid on any compact sets. Furthermore, we present a procedure for constructing CBFs for cascaded systems, utilizing the CBF of the kinematic model through integrator backstepping. Quadratic programming is employed to combine CLFs and CBFs to integrate both stability and safety in the closed loop. The proposed control law is time-invariant, continuous along trajectories, and easy to implement. Our main results guarantee both safety and local asymptotic stability for the closed-loop system.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2469-2474\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745547/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10745547/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们针对力控非全局移动机器人的稳定问题提出了一种安全临界控制器。所提出的控制法则基于级联系统的控制李亚普诺夫函数(CLF)和控制障碍函数(CBF)的构造。为了解决非整体性问题,我们设计了名义控制器,以保证极坐标闭环系统的全局渐进稳定性和局部指数稳定性,并构建了在任意紧凑集上有效的严格 Lyapunov 函数。此外,我们还提出了一种级联系统 CBF 的构建程序,通过积分器反步进利用运动模型的 CBF。我们采用二次编程将 CLF 和 CBF 结合起来,从而在闭环中将稳定性和安全性融为一体。所提出的控制法则具有时间不变性,沿轨迹连续,易于实现。我们的主要结果保证了闭环系统的安全性和局部渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safety-Critical Stabilization of Force-Controlled Nonholonomic Mobile Robots
We present a safety-critical controller for the problem of stabilization for force-controlled nonholonomic mobile robots. The proposed control law is based on the constructions of control Lyapunov functions (CLFs) and control barrier functions (CBFs) for cascaded systems. To address nonholonomicity, we design the nominal controller that guarantees global asymptotic stability and local exponential stability for the closed-loop system in polar coordinates and construct a strict Lyapunov function valid on any compact sets. Furthermore, we present a procedure for constructing CBFs for cascaded systems, utilizing the CBF of the kinematic model through integrator backstepping. Quadratic programming is employed to combine CLFs and CBFs to integrate both stability and safety in the closed loop. The proposed control law is time-invariant, continuous along trajectories, and easy to implement. Our main results guarantee both safety and local asymptotic stability for the closed-loop system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信