氢氧化铜纳米带/氧化石墨烯纳米片衍生的 Cu-Cu2O/rGO 催化剂选择性电解 CO2 制乙烯†。

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2024-11-15 DOI:10.1039/D4RA07259F
Chenxiang Peng, Bing Yao, Lei Wang and Xinyi Wan
{"title":"氢氧化铜纳米带/氧化石墨烯纳米片衍生的 Cu-Cu2O/rGO 催化剂选择性电解 CO2 制乙烯†。","authors":"Chenxiang Peng, Bing Yao, Lei Wang and Xinyi Wan","doi":"10.1039/D4RA07259F","DOIUrl":null,"url":null,"abstract":"<p >Electrolyzing CO<small><sub>2</sub></small> into ethylene (C<small><sub>2</sub></small>H<small><sub>4</sub></small>) is a promising strategy for CO<small><sub>2</sub></small> utilization and carbon neutrality since C<small><sub>2</sub></small>H<small><sub>4</sub></small> is an important industrial feedstock. However, selectively converting CO<small><sub>2</sub></small> into C<small><sub>2</sub></small>H<small><sub>4</sub></small> <em>via</em> the CO<small><sub>2</sub></small> electro-reduction reaction (CO<small><sub>2</sub></small> ERR) is still a great challenge. Herein, Cu–Cu<small><sub>2</sub></small>O nanoparticles anchored on reduced graphene oxide nanosheets (Cu–Cu<small><sub>2</sub></small>O/rGO) were prepared from copper hydroxide nanostrands (CHNs) and graphene oxide (GO) nanosheets <em>via in situ</em> electrochemical reduction. Cu–Cu<small><sub>2</sub></small>O nanoparticles with diameter less than 10 nm were formed on the surface of rGO nanosheets. After assembling the Cu–Cu<small><sub>2</sub></small>O/rGO catalyst into a flow cell, it demonstrated high Faraday efficiencies (FEs) of 55.4%, 37.6%, and 6.7% for C<small><sub>2</sub></small>H<small><sub>4</sub></small>, C<small><sub>2</sub></small>H<small><sub>6</sub></small>, and H<small><sub>2</sub></small>, respectively, and a total 93% FE for C<small><sub>2</sub></small> at −1.3 V <em>vs.</em> the standard hydrogen electrode (SHE). Moreover, its FE was 68.2% for C<small><sub>2</sub></small>H<small><sub>4</sub></small>, 10.2% for C<small><sub>2</sub></small>H<small><sub>6</sub></small>, and 20.5% for H<small><sub>2</sub></small> at −1.4 (<em>vs.</em> SHE). Besides, no liquid carbon product was detected. This high selectivity is attributed to the synergistic effect arising from the small diameter of Cu–Cu<small><sub>2</sub></small>O NPs with the combination of Cu<small><sup>0</sup></small>–Cu<small><sup>+</sup></small> and rGO nanosheets, which promotes the activation of CO<small><sub>2</sub></small> molecules, facilitates C–C coupling, and enhances stability. This may provide a facile way for designing an efficient catalyst for selectively electrolyzing CO<small><sub>2</sub></small> into valuable C<small><sub>2</sub></small> chemicals.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 49","pages":" 36602-36609"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07259f?page=search","citationCount":"0","resultStr":"{\"title\":\"Selectively electrolyzing CO2 to ethylene by a Cu–Cu2O/rGO catalyst derived from copper hydroxide nanostrands/graphene oxide nanosheets†\",\"authors\":\"Chenxiang Peng, Bing Yao, Lei Wang and Xinyi Wan\",\"doi\":\"10.1039/D4RA07259F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrolyzing CO<small><sub>2</sub></small> into ethylene (C<small><sub>2</sub></small>H<small><sub>4</sub></small>) is a promising strategy for CO<small><sub>2</sub></small> utilization and carbon neutrality since C<small><sub>2</sub></small>H<small><sub>4</sub></small> is an important industrial feedstock. However, selectively converting CO<small><sub>2</sub></small> into C<small><sub>2</sub></small>H<small><sub>4</sub></small> <em>via</em> the CO<small><sub>2</sub></small> electro-reduction reaction (CO<small><sub>2</sub></small> ERR) is still a great challenge. Herein, Cu–Cu<small><sub>2</sub></small>O nanoparticles anchored on reduced graphene oxide nanosheets (Cu–Cu<small><sub>2</sub></small>O/rGO) were prepared from copper hydroxide nanostrands (CHNs) and graphene oxide (GO) nanosheets <em>via in situ</em> electrochemical reduction. Cu–Cu<small><sub>2</sub></small>O nanoparticles with diameter less than 10 nm were formed on the surface of rGO nanosheets. After assembling the Cu–Cu<small><sub>2</sub></small>O/rGO catalyst into a flow cell, it demonstrated high Faraday efficiencies (FEs) of 55.4%, 37.6%, and 6.7% for C<small><sub>2</sub></small>H<small><sub>4</sub></small>, C<small><sub>2</sub></small>H<small><sub>6</sub></small>, and H<small><sub>2</sub></small>, respectively, and a total 93% FE for C<small><sub>2</sub></small> at −1.3 V <em>vs.</em> the standard hydrogen electrode (SHE). Moreover, its FE was 68.2% for C<small><sub>2</sub></small>H<small><sub>4</sub></small>, 10.2% for C<small><sub>2</sub></small>H<small><sub>6</sub></small>, and 20.5% for H<small><sub>2</sub></small> at −1.4 (<em>vs.</em> SHE). Besides, no liquid carbon product was detected. This high selectivity is attributed to the synergistic effect arising from the small diameter of Cu–Cu<small><sub>2</sub></small>O NPs with the combination of Cu<small><sup>0</sup></small>–Cu<small><sup>+</sup></small> and rGO nanosheets, which promotes the activation of CO<small><sub>2</sub></small> molecules, facilitates C–C coupling, and enhances stability. This may provide a facile way for designing an efficient catalyst for selectively electrolyzing CO<small><sub>2</sub></small> into valuable C<small><sub>2</sub></small> chemicals.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 49\",\"pages\":\" 36602-36609\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07259f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07259f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07259f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于 C2H4 是一种重要的工业原料,因此将二氧化碳电解成乙烯(C2H4)是一种很有前景的二氧化碳利用和碳中和战略。然而,通过 CO2 电还原反应(CO2 ERR)选择性地将 CO2 转化为 C2H4 仍然是一个巨大的挑战。在此,我们通过原位电化学还原法,利用氢氧化铜纳米带(CHNs)和氧化石墨烯(GO)纳米片制备了锚定在还原氧化石墨烯纳米片上的 Cu-Cu2O 纳米颗粒(Cu-Cu2O/rGO)。在 rGO 纳米片表面形成了直径小于 10 纳米的 Cu-Cu2O 纳米颗粒。将 Cu-Cu2O/rGO 催化剂组装到流动池中后,它对 C2H4、C2H6 和 H2 的法拉第效率(FE)分别达到 55.4%、37.6% 和 6.7%,在 -1.3 V 电压下与标准氢电极(SHE)相比,对 C2 的法拉第效率高达 93%。此外,与标准氢电极(SHE)相比,在-1.4 V电压下,C2的FE为68.2%,C2H6为10.2%,H2为20.5%。此外,没有检测到液态碳产物。这种高选择性归功于 Cu-Cu2O NPs 的小直径与 Cu0-Cu+ 和 rGO 纳米片的结合所产生的协同效应,它促进了 CO2 分子的活化,有利于 C-C 偶联,并提高了稳定性。这为设计选择性电解二氧化碳为有价值的 C2 化学物质的高效催化剂提供了便捷的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selectively electrolyzing CO2 to ethylene by a Cu–Cu2O/rGO catalyst derived from copper hydroxide nanostrands/graphene oxide nanosheets†

Selectively electrolyzing CO2 to ethylene by a Cu–Cu2O/rGO catalyst derived from copper hydroxide nanostrands/graphene oxide nanosheets†

Electrolyzing CO2 into ethylene (C2H4) is a promising strategy for CO2 utilization and carbon neutrality since C2H4 is an important industrial feedstock. However, selectively converting CO2 into C2H4 via the CO2 electro-reduction reaction (CO2 ERR) is still a great challenge. Herein, Cu–Cu2O nanoparticles anchored on reduced graphene oxide nanosheets (Cu–Cu2O/rGO) were prepared from copper hydroxide nanostrands (CHNs) and graphene oxide (GO) nanosheets via in situ electrochemical reduction. Cu–Cu2O nanoparticles with diameter less than 10 nm were formed on the surface of rGO nanosheets. After assembling the Cu–Cu2O/rGO catalyst into a flow cell, it demonstrated high Faraday efficiencies (FEs) of 55.4%, 37.6%, and 6.7% for C2H4, C2H6, and H2, respectively, and a total 93% FE for C2 at −1.3 V vs. the standard hydrogen electrode (SHE). Moreover, its FE was 68.2% for C2H4, 10.2% for C2H6, and 20.5% for H2 at −1.4 (vs. SHE). Besides, no liquid carbon product was detected. This high selectivity is attributed to the synergistic effect arising from the small diameter of Cu–Cu2O NPs with the combination of Cu0–Cu+ and rGO nanosheets, which promotes the activation of CO2 molecules, facilitates C–C coupling, and enhances stability. This may provide a facile way for designing an efficient catalyst for selectively electrolyzing CO2 into valuable C2 chemicals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信