TICMapNet:用于矢量化高清地图学习的紧密耦合时态融合管道

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Wenzhao Qiu;Shanmin Pang;Hao Zhang;Jianwu Fang;Jianru Xue
{"title":"TICMapNet:用于矢量化高清地图学习的紧密耦合时态融合管道","authors":"Wenzhao Qiu;Shanmin Pang;Hao Zhang;Jianwu Fang;Jianru Xue","doi":"10.1109/LRA.2024.3490384","DOIUrl":null,"url":null,"abstract":"High-Definition (HD) map construction is essential for autonomous driving to accurately understand the surrounding environment. Most existing methods rely on single-frame inputs to predict local map, which often fail to effectively capture the temporal correlations between frames. This limitation results in discontinuities and instability in the generated map.To tackle this limitation, we propose a \n<italic>Ti</i>\nghtly \n<italic>C</i>\noupled temporal fusion \n<italic>Map</i>\n \n<italic>Net</i>\nwork (TICMapNet). TICMapNet breaks down the fusion process into three sub-problems: PV feature alignment, BEV feature adjustment, and Query feature fusion. By doing so, we effectively integrate temporal information at different stages through three plug-and-play modules, using the proposed tightly coupled strategy. Unlike traditional methods, our approach does not rely on camera extrinsic parameters, offering a new perspective for addressing the visual fusion challenge in the field of object detection. Experimental results show that TICMapNet significantly improves upon its single-frame baseline model, achieving at least a 7.0% increase in mAP using just two consecutive frames on the nuScenes dataset, while also showing generalizability across other tasks.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11289-11296"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TICMapNet: A Tightly Coupled Temporal Fusion Pipeline for Vectorized HD Map Learning\",\"authors\":\"Wenzhao Qiu;Shanmin Pang;Hao Zhang;Jianwu Fang;Jianru Xue\",\"doi\":\"10.1109/LRA.2024.3490384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-Definition (HD) map construction is essential for autonomous driving to accurately understand the surrounding environment. Most existing methods rely on single-frame inputs to predict local map, which often fail to effectively capture the temporal correlations between frames. This limitation results in discontinuities and instability in the generated map.To tackle this limitation, we propose a \\n<italic>Ti</i>\\nghtly \\n<italic>C</i>\\noupled temporal fusion \\n<italic>Map</i>\\n \\n<italic>Net</i>\\nwork (TICMapNet). TICMapNet breaks down the fusion process into three sub-problems: PV feature alignment, BEV feature adjustment, and Query feature fusion. By doing so, we effectively integrate temporal information at different stages through three plug-and-play modules, using the proposed tightly coupled strategy. Unlike traditional methods, our approach does not rely on camera extrinsic parameters, offering a new perspective for addressing the visual fusion challenge in the field of object detection. Experimental results show that TICMapNet significantly improves upon its single-frame baseline model, achieving at least a 7.0% increase in mAP using just two consecutive frames on the nuScenes dataset, while also showing generalizability across other tasks.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11289-11296\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740793/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740793/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

高清(HD)地图的构建对于自动驾驶准确了解周围环境至关重要。现有的大多数方法都依赖于单帧输入来预测局部地图,这往往无法有效捕捉帧与帧之间的时间相关性。为了解决这一问题,我们提出了紧密耦合时空融合地图网络(TICMapNet)。TICMapNet 将融合过程分解为三个子问题:PV 特征对齐、BEV 特征调整和查询特征融合。这样,我们通过三个即插即用的模块,利用提出的紧密耦合策略,有效地整合了不同阶段的时间信息。与传统方法不同,我们的方法不依赖相机外在参数,为解决物体检测领域的视觉融合难题提供了一个新的视角。实验结果表明,TICMapNet 显著改善了其单帧基线模型,在 nuScenes 数据集上仅使用两个连续帧就实现了至少 7.0% 的 mAP 提升,同时还显示了在其他任务中的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TICMapNet: A Tightly Coupled Temporal Fusion Pipeline for Vectorized HD Map Learning
High-Definition (HD) map construction is essential for autonomous driving to accurately understand the surrounding environment. Most existing methods rely on single-frame inputs to predict local map, which often fail to effectively capture the temporal correlations between frames. This limitation results in discontinuities and instability in the generated map.To tackle this limitation, we propose a Ti ghtly C oupled temporal fusion Map Net work (TICMapNet). TICMapNet breaks down the fusion process into three sub-problems: PV feature alignment, BEV feature adjustment, and Query feature fusion. By doing so, we effectively integrate temporal information at different stages through three plug-and-play modules, using the proposed tightly coupled strategy. Unlike traditional methods, our approach does not rely on camera extrinsic parameters, offering a new perspective for addressing the visual fusion challenge in the field of object detection. Experimental results show that TICMapNet significantly improves upon its single-frame baseline model, achieving at least a 7.0% increase in mAP using just two consecutive frames on the nuScenes dataset, while also showing generalizability across other tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信