{"title":"为生物医学应用定制大孔 PVA 水凝胶的机械特性。","authors":"Shirsha Bose , Majid Akbarzadeh Khorshidi , Caitríona Lally","doi":"10.1016/j.jmbbm.2024.106787","DOIUrl":null,"url":null,"abstract":"<div><div>Polyvinyl alcohol (PVA) is a biocompatible biopolymer with superior dimensional and mechanical stability when compared to naturally available biomaterials such as collagen and gelatin. Furthermore, PVA in hydrogel form behaves non-linearly during mechanical loading, generating a response like soft biological tissues. Generally, PVA hydrogels are fabricated using freeze-thaw cycles (FTCs) and changing the number of FTCs gives control over its mechanical properties. Porosity of the hydrogel is another important factor which determines its mechanical properties and is also evident in biological soft tissues. Incorporating macro-pores in PVA hydrogels substantially reduces the stiffness of the material and can mimic some porous tissues such as lung, liver, bone marrow, kidneys, and penile tissues (corpus cavernosa and spongiosum). Within this study, we developed macro-porous PVA hydrogels using the freeze-thaw process followed by particulate leaching of sacrificial 3D-printed and milled PVA (m-PVA) filler particles. This fabrication method enables control over the porosity in macro-porous PVA hydrogels, which is crucial not only for tuning mechanical properties but also for mimicking the structure of spongy tissues, such as liver tissue and corpus cavernosum in the penis, for example. We investigated the level of porosity in the specimen using optical microscopy to understand the distribution of the pores and the pore size. The tunability of the mechanical properties of PVA hydrogels is a key finding of this study and is achieved using three factors: (i) weight percentage of sacrificial fillers, (ii) number of FTCs and (iii) concentration of PVA. These macro-porous PVA specimens have wide ranging biomedical applications as biological soft tissue analogues, or tissue engineering scaffolds, where the PVA hydrogel can be tuned to match the mechanical properties of these soft biological tissues.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"161 ","pages":"Article 106787"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring the mechanical properties of macro-porous PVA hydrogels for biomedical applications\",\"authors\":\"Shirsha Bose , Majid Akbarzadeh Khorshidi , Caitríona Lally\",\"doi\":\"10.1016/j.jmbbm.2024.106787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyvinyl alcohol (PVA) is a biocompatible biopolymer with superior dimensional and mechanical stability when compared to naturally available biomaterials such as collagen and gelatin. Furthermore, PVA in hydrogel form behaves non-linearly during mechanical loading, generating a response like soft biological tissues. Generally, PVA hydrogels are fabricated using freeze-thaw cycles (FTCs) and changing the number of FTCs gives control over its mechanical properties. Porosity of the hydrogel is another important factor which determines its mechanical properties and is also evident in biological soft tissues. Incorporating macro-pores in PVA hydrogels substantially reduces the stiffness of the material and can mimic some porous tissues such as lung, liver, bone marrow, kidneys, and penile tissues (corpus cavernosa and spongiosum). Within this study, we developed macro-porous PVA hydrogels using the freeze-thaw process followed by particulate leaching of sacrificial 3D-printed and milled PVA (m-PVA) filler particles. This fabrication method enables control over the porosity in macro-porous PVA hydrogels, which is crucial not only for tuning mechanical properties but also for mimicking the structure of spongy tissues, such as liver tissue and corpus cavernosum in the penis, for example. We investigated the level of porosity in the specimen using optical microscopy to understand the distribution of the pores and the pore size. The tunability of the mechanical properties of PVA hydrogels is a key finding of this study and is achieved using three factors: (i) weight percentage of sacrificial fillers, (ii) number of FTCs and (iii) concentration of PVA. These macro-porous PVA specimens have wide ranging biomedical applications as biological soft tissue analogues, or tissue engineering scaffolds, where the PVA hydrogel can be tuned to match the mechanical properties of these soft biological tissues.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"161 \",\"pages\":\"Article 106787\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124004193\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Tailoring the mechanical properties of macro-porous PVA hydrogels for biomedical applications
Polyvinyl alcohol (PVA) is a biocompatible biopolymer with superior dimensional and mechanical stability when compared to naturally available biomaterials such as collagen and gelatin. Furthermore, PVA in hydrogel form behaves non-linearly during mechanical loading, generating a response like soft biological tissues. Generally, PVA hydrogels are fabricated using freeze-thaw cycles (FTCs) and changing the number of FTCs gives control over its mechanical properties. Porosity of the hydrogel is another important factor which determines its mechanical properties and is also evident in biological soft tissues. Incorporating macro-pores in PVA hydrogels substantially reduces the stiffness of the material and can mimic some porous tissues such as lung, liver, bone marrow, kidneys, and penile tissues (corpus cavernosa and spongiosum). Within this study, we developed macro-porous PVA hydrogels using the freeze-thaw process followed by particulate leaching of sacrificial 3D-printed and milled PVA (m-PVA) filler particles. This fabrication method enables control over the porosity in macro-porous PVA hydrogels, which is crucial not only for tuning mechanical properties but also for mimicking the structure of spongy tissues, such as liver tissue and corpus cavernosum in the penis, for example. We investigated the level of porosity in the specimen using optical microscopy to understand the distribution of the pores and the pore size. The tunability of the mechanical properties of PVA hydrogels is a key finding of this study and is achieved using three factors: (i) weight percentage of sacrificial fillers, (ii) number of FTCs and (iii) concentration of PVA. These macro-porous PVA specimens have wide ranging biomedical applications as biological soft tissue analogues, or tissue engineering scaffolds, where the PVA hydrogel can be tuned to match the mechanical properties of these soft biological tissues.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.