{"title":"产前急性缺血对大鼠比目鱼肌的持久影响以及促红细胞生成素的保护作用","authors":"Tiphaine Sancerni, Valérie Montel, Julie Dereumetz, Laetitia Cochon, Jacques-Olivier Coq, Bruno Bastide, Marie-Hélène Canu","doi":"10.1007/s10974-024-09684-6","DOIUrl":null,"url":null,"abstract":"<p><p>Motor disorders are considered to originate mainly from brain lesions. Placental dysfunction or maternal exposure to a persistently hypoxic environment is a major cause of further motor disorders such as cerebral palsy. Our main goal was to determine the long-term effects of mild intrauterine acute ischemic stress on rat soleus myofibres and whether erythropoietin treatment could prevent these changes. Rat embryos were subjected to ischemic stress at embryonic day E17. They then received an intraperitoneal erythropoietin injection at postnatal days 1-5. Soleus muscles were collected at postnatal day 28. Prenatal ischemic stress durably affected muscle structure, as indicated by the greater fiber cross-sectional area (+ 18%) and the greater number of mature vessels (i.e. vessels with mature endothelial cells) per myofibres (+ 43%), and muscle biochemistry, as shown by changes in signaling pathways involved in protein synthesis/degradation balance (-81% for 4EBP1; -58% for AKT) and Hif1α expression levels (+ 95%). Erythropoietin injection in ischemic pups had a weak protective effect: it increased muscle mass (+ 25% with respect to ischemic pups) and partially prevented the increase in muscle degradation pathways and mature vascularization, whereas it exacerbated the decrease in synthesis pathways. Hence, erythropoietin treatment after acute ischemic stress contributes to muscle adaptation to ischemic conditions.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enduring effects of acute prenatal ischemia in rat soleus muscle, and protective role of erythropoietin.\",\"authors\":\"Tiphaine Sancerni, Valérie Montel, Julie Dereumetz, Laetitia Cochon, Jacques-Olivier Coq, Bruno Bastide, Marie-Hélène Canu\",\"doi\":\"10.1007/s10974-024-09684-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motor disorders are considered to originate mainly from brain lesions. Placental dysfunction or maternal exposure to a persistently hypoxic environment is a major cause of further motor disorders such as cerebral palsy. Our main goal was to determine the long-term effects of mild intrauterine acute ischemic stress on rat soleus myofibres and whether erythropoietin treatment could prevent these changes. Rat embryos were subjected to ischemic stress at embryonic day E17. They then received an intraperitoneal erythropoietin injection at postnatal days 1-5. Soleus muscles were collected at postnatal day 28. Prenatal ischemic stress durably affected muscle structure, as indicated by the greater fiber cross-sectional area (+ 18%) and the greater number of mature vessels (i.e. vessels with mature endothelial cells) per myofibres (+ 43%), and muscle biochemistry, as shown by changes in signaling pathways involved in protein synthesis/degradation balance (-81% for 4EBP1; -58% for AKT) and Hif1α expression levels (+ 95%). Erythropoietin injection in ischemic pups had a weak protective effect: it increased muscle mass (+ 25% with respect to ischemic pups) and partially prevented the increase in muscle degradation pathways and mature vascularization, whereas it exacerbated the decrease in synthesis pathways. Hence, erythropoietin treatment after acute ischemic stress contributes to muscle adaptation to ischemic conditions.</p>\",\"PeriodicalId\":16422,\"journal\":{\"name\":\"Journal of Muscle Research and Cell Motility\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Muscle Research and Cell Motility\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10974-024-09684-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-024-09684-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Enduring effects of acute prenatal ischemia in rat soleus muscle, and protective role of erythropoietin.
Motor disorders are considered to originate mainly from brain lesions. Placental dysfunction or maternal exposure to a persistently hypoxic environment is a major cause of further motor disorders such as cerebral palsy. Our main goal was to determine the long-term effects of mild intrauterine acute ischemic stress on rat soleus myofibres and whether erythropoietin treatment could prevent these changes. Rat embryos were subjected to ischemic stress at embryonic day E17. They then received an intraperitoneal erythropoietin injection at postnatal days 1-5. Soleus muscles were collected at postnatal day 28. Prenatal ischemic stress durably affected muscle structure, as indicated by the greater fiber cross-sectional area (+ 18%) and the greater number of mature vessels (i.e. vessels with mature endothelial cells) per myofibres (+ 43%), and muscle biochemistry, as shown by changes in signaling pathways involved in protein synthesis/degradation balance (-81% for 4EBP1; -58% for AKT) and Hif1α expression levels (+ 95%). Erythropoietin injection in ischemic pups had a weak protective effect: it increased muscle mass (+ 25% with respect to ischemic pups) and partially prevented the increase in muscle degradation pathways and mature vascularization, whereas it exacerbated the decrease in synthesis pathways. Hence, erythropoietin treatment after acute ischemic stress contributes to muscle adaptation to ischemic conditions.
期刊介绍:
The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.