{"title":"SlTDF1:番茄被膜降解和花粉发育的关键调控因子","authors":"Zhengliang Sun, Baohui Cheng, Yanhong Zhang, Liangzhe Meng, Yuhe Yao, Yan Liang","doi":"10.1016/j.plantsci.2024.112321","DOIUrl":null,"url":null,"abstract":"<p><p>Pollen formation and development during the life cycle of flowering plant are crucial for maintaining reproductive and genetic diversity. In this study, an R2R3MYB family transcription factor, SlTDF1 (SlMYB35), was predominantly expressed in stamens. Repressed expression of SlTDF1 results in a delay in the degradation of the anther tapetum in tomatoes, which in turn leads to the formation of abnormal pollen, including a reduction in the number of single-fruit seeds and fertility when compared to wild-type plants. Analysis of paraffin sections demonstrated that SlTDF1 is a crucial factor in the maturation of tomato pollen. Further analysis of the transcriptomic data revealed that downregulation of the SlTDF1 gene significantly suppressed the expression of genes related to sugar metabolism and anther development. The findings of this study indicated that SlTDF1 plays a pivotal role in regulating tomato pollen development. Moreover, these findings provide a genetic resource for male sterility in tomato plants.</p>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":" ","pages":"112321"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SlTDF1: A Key Regulator of Tapetum Degradation and Pollen Development in Tomato.\",\"authors\":\"Zhengliang Sun, Baohui Cheng, Yanhong Zhang, Liangzhe Meng, Yuhe Yao, Yan Liang\",\"doi\":\"10.1016/j.plantsci.2024.112321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pollen formation and development during the life cycle of flowering plant are crucial for maintaining reproductive and genetic diversity. In this study, an R2R3MYB family transcription factor, SlTDF1 (SlMYB35), was predominantly expressed in stamens. Repressed expression of SlTDF1 results in a delay in the degradation of the anther tapetum in tomatoes, which in turn leads to the formation of abnormal pollen, including a reduction in the number of single-fruit seeds and fertility when compared to wild-type plants. Analysis of paraffin sections demonstrated that SlTDF1 is a crucial factor in the maturation of tomato pollen. Further analysis of the transcriptomic data revealed that downregulation of the SlTDF1 gene significantly suppressed the expression of genes related to sugar metabolism and anther development. The findings of this study indicated that SlTDF1 plays a pivotal role in regulating tomato pollen development. Moreover, these findings provide a genetic resource for male sterility in tomato plants.</p>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\" \",\"pages\":\"112321\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plantsci.2024.112321\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plantsci.2024.112321","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SlTDF1: A Key Regulator of Tapetum Degradation and Pollen Development in Tomato.
Pollen formation and development during the life cycle of flowering plant are crucial for maintaining reproductive and genetic diversity. In this study, an R2R3MYB family transcription factor, SlTDF1 (SlMYB35), was predominantly expressed in stamens. Repressed expression of SlTDF1 results in a delay in the degradation of the anther tapetum in tomatoes, which in turn leads to the formation of abnormal pollen, including a reduction in the number of single-fruit seeds and fertility when compared to wild-type plants. Analysis of paraffin sections demonstrated that SlTDF1 is a crucial factor in the maturation of tomato pollen. Further analysis of the transcriptomic data revealed that downregulation of the SlTDF1 gene significantly suppressed the expression of genes related to sugar metabolism and anther development. The findings of this study indicated that SlTDF1 plays a pivotal role in regulating tomato pollen development. Moreover, these findings provide a genetic resource for male sterility in tomato plants.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.