Stephen J Gaughran, Rachel Gray, Alexander Ochoa, Menna Jones, Nicole Fusco, Joshua M Miller, Nikos Poulakakis, Kevin de Queiroz, Adalgisa Caccone, Evelyn L Jensen
{"title":"全基因组测序证实加拉帕戈斯巨龟有多个物种。","authors":"Stephen J Gaughran, Rachel Gray, Alexander Ochoa, Menna Jones, Nicole Fusco, Joshua M Miller, Nikos Poulakakis, Kevin de Queiroz, Adalgisa Caccone, Evelyn L Jensen","doi":"10.1093/evolut/qpae164","DOIUrl":null,"url":null,"abstract":"<p><p>Galapagos giant tortoises are endemic to the Galapagos Archipelago, where they are found in isolated populations. While these populations are widely considered distinguishable in morphology, behavior, and genetics, the recent divergence of these taxa has made their status as species controversial. Here, we apply multispecies coalescent methods for species delimitation to whole-genome resequencing data from 38 tortoises across all 13 extant taxa to assess support for delimiting these taxa as species. In contrast to previous studies based solely on divergence time, we find strong evidence to reject the hypothesis that all Galapagos giant tortoises belong to a single species. Instead, a conservative interpretation of model-based and divergence-based results indicates that these taxa form a species complex consisting of a minimum of 9 species, with most analyses supporting 13 species. There is mixed support for the species status of taxa living on the same island, with some methods suggesting multiple populations of a single species per island. These results make clear that Galapagos giant tortoise taxa represent different stages in the process of speciation, with some taxa further along in that evolutionary process than others. Our study provides insight into the complex process of speciation on islands, which is urgently needed given the threatened status of island species around the world.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":"296-308"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-genome sequencing confirms multiple species of Galapagos giant tortoises.\",\"authors\":\"Stephen J Gaughran, Rachel Gray, Alexander Ochoa, Menna Jones, Nicole Fusco, Joshua M Miller, Nikos Poulakakis, Kevin de Queiroz, Adalgisa Caccone, Evelyn L Jensen\",\"doi\":\"10.1093/evolut/qpae164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Galapagos giant tortoises are endemic to the Galapagos Archipelago, where they are found in isolated populations. While these populations are widely considered distinguishable in morphology, behavior, and genetics, the recent divergence of these taxa has made their status as species controversial. Here, we apply multispecies coalescent methods for species delimitation to whole-genome resequencing data from 38 tortoises across all 13 extant taxa to assess support for delimiting these taxa as species. In contrast to previous studies based solely on divergence time, we find strong evidence to reject the hypothesis that all Galapagos giant tortoises belong to a single species. Instead, a conservative interpretation of model-based and divergence-based results indicates that these taxa form a species complex consisting of a minimum of 9 species, with most analyses supporting 13 species. There is mixed support for the species status of taxa living on the same island, with some methods suggesting multiple populations of a single species per island. These results make clear that Galapagos giant tortoise taxa represent different stages in the process of speciation, with some taxa further along in that evolutionary process than others. Our study provides insight into the complex process of speciation on islands, which is urgently needed given the threatened status of island species around the world.</p>\",\"PeriodicalId\":12082,\"journal\":{\"name\":\"Evolution\",\"volume\":\" \",\"pages\":\"296-308\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/evolut/qpae164\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae164","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Whole-genome sequencing confirms multiple species of Galapagos giant tortoises.
Galapagos giant tortoises are endemic to the Galapagos Archipelago, where they are found in isolated populations. While these populations are widely considered distinguishable in morphology, behavior, and genetics, the recent divergence of these taxa has made their status as species controversial. Here, we apply multispecies coalescent methods for species delimitation to whole-genome resequencing data from 38 tortoises across all 13 extant taxa to assess support for delimiting these taxa as species. In contrast to previous studies based solely on divergence time, we find strong evidence to reject the hypothesis that all Galapagos giant tortoises belong to a single species. Instead, a conservative interpretation of model-based and divergence-based results indicates that these taxa form a species complex consisting of a minimum of 9 species, with most analyses supporting 13 species. There is mixed support for the species status of taxa living on the same island, with some methods suggesting multiple populations of a single species per island. These results make clear that Galapagos giant tortoise taxa represent different stages in the process of speciation, with some taxa further along in that evolutionary process than others. Our study provides insight into the complex process of speciation on islands, which is urgently needed given the threatened status of island species around the world.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.