{"title":"伊兹密尔省(土耳其西部)建筑物室内氡浓度的地质和地质统计模型。","authors":"Mutlu Zeybek , Türkan Alkan","doi":"10.1016/j.jenvrad.2024.107571","DOIUrl":null,"url":null,"abstract":"<div><div>Radon is a carcinogenic gas that cannot be detected by the five senses and poses a significant health threat, particularly in the form of lung cancer, to individuals living in all enclosed buildings worldwide.</div><div>The aims of this study are to (1) measure Indoor Radon Concentrations (IRCs) in 117 buildings in İzmir, Turkey, (2) investigate and model the relationship between the IRCs and Geological Units (GUs) and Active Faults (AFs), and (3) compare the IRC values with the European Indoor Radon Reference Level (EIRRL) (200 Bq/m³) to identify areas that pose a potential health risk for lung cancer due to elevated Indoor Radon Levels (IRLs).</div><div>The IRCs were measured using Solid State Nuclear Track Detectors (SSNTDs) in 117 buildings. These measurements were conducted between February 2013 and March 2013. The IRCs were visualized on a map along with the GUs and AFs, and a geological cross-section was generated from the data represented on this map.</div><div>The IRCs in 117 buildings were geostatistically modeled in conjunction with AFs. Generally, the highest IRCs were found in locations proximal to AFs, with an increase in IRLs observed parallel to the AFs's directions. The highest IRC (487 Bq/m³) was recorded in a building located on alluvium derived primarily from volcanic rocks, whereas the lowest concentration (28 Bq/m³) was observed in a building situated on alluvium predominantly derived from sedimentary rocks. The statistical parameters (minimum: 28 Bq/m³, maximum: 487 Bq/m³, arithmetic mean: 210 Bq/m³) of the IRCs were established.</div><div>In İzmir, IRCs in 59 out of 117 buildings, representing approximately 50% of the sampled structures, were found to exceed the recommended EIRRL of 200 Bq/m³. It is imperative that IRCs in all enclosed buildings be regularly and periodically monitored by relevant authorities, and mitigation measures should be implemented in locations where IRLs exceed the threshold value of 200 Bq/m³.</div></div>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geological and geostatistical modeling of indoor radon concentration in buildings of İzmir Province (Western Turkey)\",\"authors\":\"Mutlu Zeybek , Türkan Alkan\",\"doi\":\"10.1016/j.jenvrad.2024.107571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Radon is a carcinogenic gas that cannot be detected by the five senses and poses a significant health threat, particularly in the form of lung cancer, to individuals living in all enclosed buildings worldwide.</div><div>The aims of this study are to (1) measure Indoor Radon Concentrations (IRCs) in 117 buildings in İzmir, Turkey, (2) investigate and model the relationship between the IRCs and Geological Units (GUs) and Active Faults (AFs), and (3) compare the IRC values with the European Indoor Radon Reference Level (EIRRL) (200 Bq/m³) to identify areas that pose a potential health risk for lung cancer due to elevated Indoor Radon Levels (IRLs).</div><div>The IRCs were measured using Solid State Nuclear Track Detectors (SSNTDs) in 117 buildings. These measurements were conducted between February 2013 and March 2013. The IRCs were visualized on a map along with the GUs and AFs, and a geological cross-section was generated from the data represented on this map.</div><div>The IRCs in 117 buildings were geostatistically modeled in conjunction with AFs. Generally, the highest IRCs were found in locations proximal to AFs, with an increase in IRLs observed parallel to the AFs's directions. The highest IRC (487 Bq/m³) was recorded in a building located on alluvium derived primarily from volcanic rocks, whereas the lowest concentration (28 Bq/m³) was observed in a building situated on alluvium predominantly derived from sedimentary rocks. The statistical parameters (minimum: 28 Bq/m³, maximum: 487 Bq/m³, arithmetic mean: 210 Bq/m³) of the IRCs were established.</div><div>In İzmir, IRCs in 59 out of 117 buildings, representing approximately 50% of the sampled structures, were found to exceed the recommended EIRRL of 200 Bq/m³. It is imperative that IRCs in all enclosed buildings be regularly and periodically monitored by relevant authorities, and mitigation measures should be implemented in locations where IRLs exceed the threshold value of 200 Bq/m³.</div></div>\",\"PeriodicalId\":15667,\"journal\":{\"name\":\"Journal of environmental radioactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental radioactivity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0265931X24002030\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental radioactivity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0265931X24002030","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Geological and geostatistical modeling of indoor radon concentration in buildings of İzmir Province (Western Turkey)
Radon is a carcinogenic gas that cannot be detected by the five senses and poses a significant health threat, particularly in the form of lung cancer, to individuals living in all enclosed buildings worldwide.
The aims of this study are to (1) measure Indoor Radon Concentrations (IRCs) in 117 buildings in İzmir, Turkey, (2) investigate and model the relationship between the IRCs and Geological Units (GUs) and Active Faults (AFs), and (3) compare the IRC values with the European Indoor Radon Reference Level (EIRRL) (200 Bq/m³) to identify areas that pose a potential health risk for lung cancer due to elevated Indoor Radon Levels (IRLs).
The IRCs were measured using Solid State Nuclear Track Detectors (SSNTDs) in 117 buildings. These measurements were conducted between February 2013 and March 2013. The IRCs were visualized on a map along with the GUs and AFs, and a geological cross-section was generated from the data represented on this map.
The IRCs in 117 buildings were geostatistically modeled in conjunction with AFs. Generally, the highest IRCs were found in locations proximal to AFs, with an increase in IRLs observed parallel to the AFs's directions. The highest IRC (487 Bq/m³) was recorded in a building located on alluvium derived primarily from volcanic rocks, whereas the lowest concentration (28 Bq/m³) was observed in a building situated on alluvium predominantly derived from sedimentary rocks. The statistical parameters (minimum: 28 Bq/m³, maximum: 487 Bq/m³, arithmetic mean: 210 Bq/m³) of the IRCs were established.
In İzmir, IRCs in 59 out of 117 buildings, representing approximately 50% of the sampled structures, were found to exceed the recommended EIRRL of 200 Bq/m³. It is imperative that IRCs in all enclosed buildings be regularly and periodically monitored by relevant authorities, and mitigation measures should be implemented in locations where IRLs exceed the threshold value of 200 Bq/m³.
期刊介绍:
The Journal of Environmental Radioactivity provides a coherent international forum for publication of original research or review papers on any aspect of the occurrence of radioactivity in natural systems.
Relevant subject areas range from applications of environmental radionuclides as mechanistic or timescale tracers of natural processes to assessments of the radioecological or radiological effects of ambient radioactivity. Papers deal with naturally occurring nuclides or with those created and released by man through nuclear weapons manufacture and testing, energy production, fuel-cycle technology, etc. Reports on radioactivity in the oceans, sediments, rivers, lakes, groundwaters, soils, atmosphere and all divisions of the biosphere are welcomed, but these should not simply be of a monitoring nature unless the data are particularly innovative.