蛹:利用原型分析解码空间转录组学中的组织区划。

IF 5.2 1区 生物学 Q1 BIOLOGY
Demeter Túrós, Jelica Vasiljevic, Kerstin Hahn, Sven Rottenberg, Alberto Valdeolivas
{"title":"蛹:利用原型分析解码空间转录组学中的组织区划。","authors":"Demeter Túrós, Jelica Vasiljevic, Kerstin Hahn, Sven Rottenberg, Alberto Valdeolivas","doi":"10.1038/s42003-024-07165-7","DOIUrl":null,"url":null,"abstract":"<p><p>Dissecting tissue compartments in spatial transcriptomics (ST) remains challenging due to limited spatial resolution and dependence on single-cell reference data. We present Chrysalis, a computational method that rapidly uncovers tissue compartments through spatially variable gene (SVG) detection and archetypal analysis without requiring external reference data. Additionally, it offers a unique visualisation approach for swift tissue characterisation and provides access to the underlying gene expression signatures, enabling the identification of spatially and functionally distinct cellular niches. Chrysalis was evaluated through various benchmarks and validated against deconvolution, independently obtained cell type abundance data, and histopathological annotations, demonstrating superior performance compared to other algorithms on both in silico and real-world test examples. Furthermore, we showcased its versatility across different technologies, such as Visium, Visium HD, Slide-seq, and Stereo-seq.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1520"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chrysalis: decoding tissue compartments in spatial transcriptomics with archetypal analysis.\",\"authors\":\"Demeter Túrós, Jelica Vasiljevic, Kerstin Hahn, Sven Rottenberg, Alberto Valdeolivas\",\"doi\":\"10.1038/s42003-024-07165-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dissecting tissue compartments in spatial transcriptomics (ST) remains challenging due to limited spatial resolution and dependence on single-cell reference data. We present Chrysalis, a computational method that rapidly uncovers tissue compartments through spatially variable gene (SVG) detection and archetypal analysis without requiring external reference data. Additionally, it offers a unique visualisation approach for swift tissue characterisation and provides access to the underlying gene expression signatures, enabling the identification of spatially and functionally distinct cellular niches. Chrysalis was evaluated through various benchmarks and validated against deconvolution, independently obtained cell type abundance data, and histopathological annotations, demonstrating superior performance compared to other algorithms on both in silico and real-world test examples. Furthermore, we showcased its versatility across different technologies, such as Visium, Visium HD, Slide-seq, and Stereo-seq.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"7 1\",\"pages\":\"1520\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-024-07165-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07165-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于空间分辨率有限且依赖于单细胞参考数据,在空间转录组学(ST)中剖析组织区系仍然具有挑战性。我们介绍的 Chrysalis 是一种计算方法,可通过空间可变基因 (SVG) 检测和原型分析快速揭示组织区系,而无需外部参考数据。此外,它还提供了一种独特的可视化方法,用于快速组织特征描述,并提供了对潜在基因表达特征的访问,从而能够识别空间和功能上不同的细胞壁龛。我们通过各种基准对 Chrysalis 进行了评估,并根据解卷积、独立获得的细胞类型丰度数据和组织病理学注释进行了验证,结果表明 Chrysalis 在硅学和真实世界测试示例中的性能均优于其他算法。此外,我们还展示了它在 Visium、Visium HD、Slide-seq 和 Stereo-seq 等不同技术上的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chrysalis: decoding tissue compartments in spatial transcriptomics with archetypal analysis.

Dissecting tissue compartments in spatial transcriptomics (ST) remains challenging due to limited spatial resolution and dependence on single-cell reference data. We present Chrysalis, a computational method that rapidly uncovers tissue compartments through spatially variable gene (SVG) detection and archetypal analysis without requiring external reference data. Additionally, it offers a unique visualisation approach for swift tissue characterisation and provides access to the underlying gene expression signatures, enabling the identification of spatially and functionally distinct cellular niches. Chrysalis was evaluated through various benchmarks and validated against deconvolution, independently obtained cell type abundance data, and histopathological annotations, demonstrating superior performance compared to other algorithms on both in silico and real-world test examples. Furthermore, we showcased its versatility across different technologies, such as Visium, Visium HD, Slide-seq, and Stereo-seq.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信