Graham J. Burton , Eric Jauniaux , Tereza Cindrova-Davies , Margherita Y. Turco
{"title":"人类妊娠囊作为绒毛膜胎盘在妊娠早期的作用;次级卵黄囊和类器官模型。","authors":"Graham J. Burton , Eric Jauniaux , Tereza Cindrova-Davies , Margherita Y. Turco","doi":"10.1016/j.ydbio.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>The yolk sac is phylogenetically the oldest of the extra-embryonic membranes and plays important roles in nutrient transfer during early pregnancy in many species. In the human this function is considered largely vestigial, in part because the secondary yolk sac never makes contact with the inner surface of the chorionic sac. Instead, it is separated from the chorion by the fluid-filled extra-embryonic coelom and attached to the developing embryo by a relatively long vitelline duct. The coelomic fluid is, however, rich in nutrients and key co-factors, including folic acid and anti-oxidants, derived from maternal plasma and the endometrial glands. Bulk sequencing has recently revealed the presence of transcripts encoding numerous transporter proteins for these ligands. Mounting evidence suggests the human secondary yolk sac plays a pivotal role in the transfer of histotrophic nutrition during the critical phase of organogenesis but also of chemicals such as medical drugs and cotinine. We therefore propose that the early placental villi, coelomic cavity and yolk sac combine to function physiologically as a choriovitelline placenta during the first weeks of pregnancy. We have derived organoids from the mouse yolk sac as proof-of-principle of a model system that could be used to answer many questions concerning the functional capacity of the human yolk sac as a maternal-fetal exchange interface during the first trimester of pregnancy.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"518 ","pages":"Pages 28-36"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The human gestational sac as a choriovitelline placenta during early pregnancy; the secondary yolk sac and organoid models\",\"authors\":\"Graham J. Burton , Eric Jauniaux , Tereza Cindrova-Davies , Margherita Y. Turco\",\"doi\":\"10.1016/j.ydbio.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The yolk sac is phylogenetically the oldest of the extra-embryonic membranes and plays important roles in nutrient transfer during early pregnancy in many species. In the human this function is considered largely vestigial, in part because the secondary yolk sac never makes contact with the inner surface of the chorionic sac. Instead, it is separated from the chorion by the fluid-filled extra-embryonic coelom and attached to the developing embryo by a relatively long vitelline duct. The coelomic fluid is, however, rich in nutrients and key co-factors, including folic acid and anti-oxidants, derived from maternal plasma and the endometrial glands. Bulk sequencing has recently revealed the presence of transcripts encoding numerous transporter proteins for these ligands. Mounting evidence suggests the human secondary yolk sac plays a pivotal role in the transfer of histotrophic nutrition during the critical phase of organogenesis but also of chemicals such as medical drugs and cotinine. We therefore propose that the early placental villi, coelomic cavity and yolk sac combine to function physiologically as a choriovitelline placenta during the first weeks of pregnancy. We have derived organoids from the mouse yolk sac as proof-of-principle of a model system that could be used to answer many questions concerning the functional capacity of the human yolk sac as a maternal-fetal exchange interface during the first trimester of pregnancy.</div></div>\",\"PeriodicalId\":11070,\"journal\":{\"name\":\"Developmental biology\",\"volume\":\"518 \",\"pages\":\"Pages 28-36\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012160624002598\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624002598","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The human gestational sac as a choriovitelline placenta during early pregnancy; the secondary yolk sac and organoid models
The yolk sac is phylogenetically the oldest of the extra-embryonic membranes and plays important roles in nutrient transfer during early pregnancy in many species. In the human this function is considered largely vestigial, in part because the secondary yolk sac never makes contact with the inner surface of the chorionic sac. Instead, it is separated from the chorion by the fluid-filled extra-embryonic coelom and attached to the developing embryo by a relatively long vitelline duct. The coelomic fluid is, however, rich in nutrients and key co-factors, including folic acid and anti-oxidants, derived from maternal plasma and the endometrial glands. Bulk sequencing has recently revealed the presence of transcripts encoding numerous transporter proteins for these ligands. Mounting evidence suggests the human secondary yolk sac plays a pivotal role in the transfer of histotrophic nutrition during the critical phase of organogenesis but also of chemicals such as medical drugs and cotinine. We therefore propose that the early placental villi, coelomic cavity and yolk sac combine to function physiologically as a choriovitelline placenta during the first weeks of pregnancy. We have derived organoids from the mouse yolk sac as proof-of-principle of a model system that could be used to answer many questions concerning the functional capacity of the human yolk sac as a maternal-fetal exchange interface during the first trimester of pregnancy.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.