{"title":"胚层形成过程中母体和子代对H3K4me1染色质标记的贡献","authors":"Kitt D. Paraiso , Ira L. Blitz , Ken W.Y. Cho","doi":"10.1016/j.ydbio.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>An early step in triploblastic embryo differentiation is the formation of the three germ layers. Maternal pioneer transcription factors (TFs) bind to embryonic enhancers before zygotic genome activation, initiating germ layer specification. While maternal TFs' role in establishing epigenetic marks is known, how early pluripotent cells gain spatially restricted epigenetic identities remains unclear. We show that by the early gastrula stage, H3K4me1-marked regions become distinct in each germ layer, with certain chromatin regions forming high density H3K4me1 marked regions (HDRs). Genes associated with these HDRs are more robustly expressed compared to those associated with low density H3K4me1 marked regions (LDRs) in the genome. This process is driven by the sequential actions of maternal and zygotic factors. Knockdown of key maternal endodermal TFs (Otx1, Vegt and Foxh1) leads to a loss of endodermal H3K4me1 marks in endoderm, with a concurrent emergence of ectodermal and mesodermal marks, indicating a shift in chromatin state. This work highlights the importance of coordinated activities of maternal and zygotic TFs in defining the regionally-resolved and dynamic process of chromatin modification conferred by H3K4me1 in the early <em>Xenopus</em> embryo.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"518 ","pages":"Pages 8-19"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal and zygotic contributions to H3K4me1 chromatin marking during germ layer formation\",\"authors\":\"Kitt D. Paraiso , Ira L. Blitz , Ken W.Y. Cho\",\"doi\":\"10.1016/j.ydbio.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An early step in triploblastic embryo differentiation is the formation of the three germ layers. Maternal pioneer transcription factors (TFs) bind to embryonic enhancers before zygotic genome activation, initiating germ layer specification. While maternal TFs' role in establishing epigenetic marks is known, how early pluripotent cells gain spatially restricted epigenetic identities remains unclear. We show that by the early gastrula stage, H3K4me1-marked regions become distinct in each germ layer, with certain chromatin regions forming high density H3K4me1 marked regions (HDRs). Genes associated with these HDRs are more robustly expressed compared to those associated with low density H3K4me1 marked regions (LDRs) in the genome. This process is driven by the sequential actions of maternal and zygotic factors. Knockdown of key maternal endodermal TFs (Otx1, Vegt and Foxh1) leads to a loss of endodermal H3K4me1 marks in endoderm, with a concurrent emergence of ectodermal and mesodermal marks, indicating a shift in chromatin state. This work highlights the importance of coordinated activities of maternal and zygotic TFs in defining the regionally-resolved and dynamic process of chromatin modification conferred by H3K4me1 in the early <em>Xenopus</em> embryo.</div></div>\",\"PeriodicalId\":11070,\"journal\":{\"name\":\"Developmental biology\",\"volume\":\"518 \",\"pages\":\"Pages 8-19\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012160624002586\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624002586","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Maternal and zygotic contributions to H3K4me1 chromatin marking during germ layer formation
An early step in triploblastic embryo differentiation is the formation of the three germ layers. Maternal pioneer transcription factors (TFs) bind to embryonic enhancers before zygotic genome activation, initiating germ layer specification. While maternal TFs' role in establishing epigenetic marks is known, how early pluripotent cells gain spatially restricted epigenetic identities remains unclear. We show that by the early gastrula stage, H3K4me1-marked regions become distinct in each germ layer, with certain chromatin regions forming high density H3K4me1 marked regions (HDRs). Genes associated with these HDRs are more robustly expressed compared to those associated with low density H3K4me1 marked regions (LDRs) in the genome. This process is driven by the sequential actions of maternal and zygotic factors. Knockdown of key maternal endodermal TFs (Otx1, Vegt and Foxh1) leads to a loss of endodermal H3K4me1 marks in endoderm, with a concurrent emergence of ectodermal and mesodermal marks, indicating a shift in chromatin state. This work highlights the importance of coordinated activities of maternal and zygotic TFs in defining the regionally-resolved and dynamic process of chromatin modification conferred by H3K4me1 in the early Xenopus embryo.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.