Madré Meyer , Carla Fourie , Haynes van der Merwe , Hennie Botha , Anna-Mart Engelbrecht
{"title":"针对宫颈癌的耐药性:老年溶解疗法的新途径","authors":"Madré Meyer , Carla Fourie , Haynes van der Merwe , Hennie Botha , Anna-Mart Engelbrecht","doi":"10.1016/j.advms.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Cervical cancer poses a significant global health challenge, particularly impacting women in economically developing nations. This disparity stems from a combination of factors, including inadequate screening infrastructure and resource limitations. However, the foremost contributor is the widespread lack of awareness and limited accessibility to Human Papillomavirus (HPV) vaccination, which is a key preventative measure against cervical cancer development. Despite advancements in cervical cancer prevention, treatment resistance remains a major hurdle in achieving improved patient outcomes. Cellular senescence, specifically the senescence-associated secretory phenotype (SASP) and its bidirectional relationship with the immune system, has been implicated in resistance to conventional cervical cancer chemotherapy treatments. The exact mechanisms by which this state of growth arrest and the associated changes in immune regulation contribute to cervical cancer progression and the associated drug resistance are not entirely understood. This underscores the necessity for innovative strategies to address the prevalence of treatment-resistant cervical cancer, with one promising avenue being the utilisation of senolytics. Senolytics are agents that have promising efficacy in clearing senescent cells from tumour tissues, however neither the utilisation of senolytics for addressing senescence-induced treatment resistance nor the potential integration of immunotherapy as senolytic agents in cervical cancer treatment has been explored to date. This review provides a concise overview of the mechanisms underlying senescence induction and the pivotal role of the immune system in this process. Additionally, it explores various senolytic approaches that hold significant potential for advancing cervical cancer research.</div></div>","PeriodicalId":7347,"journal":{"name":"Advances in medical sciences","volume":"70 1","pages":"Pages 33-43"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting treatment resistance in cervical cancer: A new avenue for senolytic therapies\",\"authors\":\"Madré Meyer , Carla Fourie , Haynes van der Merwe , Hennie Botha , Anna-Mart Engelbrecht\",\"doi\":\"10.1016/j.advms.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cervical cancer poses a significant global health challenge, particularly impacting women in economically developing nations. This disparity stems from a combination of factors, including inadequate screening infrastructure and resource limitations. However, the foremost contributor is the widespread lack of awareness and limited accessibility to Human Papillomavirus (HPV) vaccination, which is a key preventative measure against cervical cancer development. Despite advancements in cervical cancer prevention, treatment resistance remains a major hurdle in achieving improved patient outcomes. Cellular senescence, specifically the senescence-associated secretory phenotype (SASP) and its bidirectional relationship with the immune system, has been implicated in resistance to conventional cervical cancer chemotherapy treatments. The exact mechanisms by which this state of growth arrest and the associated changes in immune regulation contribute to cervical cancer progression and the associated drug resistance are not entirely understood. This underscores the necessity for innovative strategies to address the prevalence of treatment-resistant cervical cancer, with one promising avenue being the utilisation of senolytics. Senolytics are agents that have promising efficacy in clearing senescent cells from tumour tissues, however neither the utilisation of senolytics for addressing senescence-induced treatment resistance nor the potential integration of immunotherapy as senolytic agents in cervical cancer treatment has been explored to date. This review provides a concise overview of the mechanisms underlying senescence induction and the pivotal role of the immune system in this process. Additionally, it explores various senolytic approaches that hold significant potential for advancing cervical cancer research.</div></div>\",\"PeriodicalId\":7347,\"journal\":{\"name\":\"Advances in medical sciences\",\"volume\":\"70 1\",\"pages\":\"Pages 33-43\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in medical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1896112624000622\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in medical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1896112624000622","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Targeting treatment resistance in cervical cancer: A new avenue for senolytic therapies
Cervical cancer poses a significant global health challenge, particularly impacting women in economically developing nations. This disparity stems from a combination of factors, including inadequate screening infrastructure and resource limitations. However, the foremost contributor is the widespread lack of awareness and limited accessibility to Human Papillomavirus (HPV) vaccination, which is a key preventative measure against cervical cancer development. Despite advancements in cervical cancer prevention, treatment resistance remains a major hurdle in achieving improved patient outcomes. Cellular senescence, specifically the senescence-associated secretory phenotype (SASP) and its bidirectional relationship with the immune system, has been implicated in resistance to conventional cervical cancer chemotherapy treatments. The exact mechanisms by which this state of growth arrest and the associated changes in immune regulation contribute to cervical cancer progression and the associated drug resistance are not entirely understood. This underscores the necessity for innovative strategies to address the prevalence of treatment-resistant cervical cancer, with one promising avenue being the utilisation of senolytics. Senolytics are agents that have promising efficacy in clearing senescent cells from tumour tissues, however neither the utilisation of senolytics for addressing senescence-induced treatment resistance nor the potential integration of immunotherapy as senolytic agents in cervical cancer treatment has been explored to date. This review provides a concise overview of the mechanisms underlying senescence induction and the pivotal role of the immune system in this process. Additionally, it explores various senolytic approaches that hold significant potential for advancing cervical cancer research.
期刊介绍:
Advances in Medical Sciences is an international, peer-reviewed journal that welcomes original research articles and reviews on current advances in life sciences, preclinical and clinical medicine, and related disciplines.
The Journal’s primary aim is to make every effort to contribute to progress in medical sciences. The strive is to bridge laboratory and clinical settings with cutting edge research findings and new developments.
Advances in Medical Sciences publishes articles which bring novel insights into diagnostic and molecular imaging, offering essential prior knowledge for diagnosis and treatment indispensable in all areas of medical sciences. It also publishes articles on pathological sciences giving foundation knowledge on the overall study of human diseases. Through its publications Advances in Medical Sciences also stresses the importance of pharmaceutical sciences as a rapidly and ever expanding area of research on drug design, development, action and evaluation contributing significantly to a variety of scientific disciplines.
The journal welcomes submissions from the following disciplines:
General and internal medicine,
Cancer research,
Genetics,
Endocrinology,
Gastroenterology,
Cardiology and Cardiovascular Medicine,
Immunology and Allergy,
Pathology and Forensic Medicine,
Cell and molecular Biology,
Haematology,
Biochemistry,
Clinical and Experimental Pathology.