Chengxin He, Zhenjiang Zhao, Xinye Wang, Huiru Zheng, Lei Duan, Jie Zuo
{"title":"通过基于元学习的图转换器探索冷启动情景下的药物-目标相互作用预测。","authors":"Chengxin He, Zhenjiang Zhao, Xinye Wang, Huiru Zheng, Lei Duan, Jie Zuo","doi":"10.1016/j.ymeth.2024.11.010","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting drug-target interaction (DTI) is of great importance for drug discovery and development. With the rapid development of biological and chemical technologies, computational methods for DTI prediction are becoming a promising approach. However, there are few solutions to the cold-start problem in DTI prediction scenarios, as these methods rely on existing interaction information to support their modeling. Consequently, they are unable to effectively predict DTIs for new drugs or targets with limited interaction data in the existing work. To this end, we propose a graph transformer method based on meta-learning named MGDTI (short for Meta-learning-based Graph Transformer for Drug-Target Interaction prediction) to fill this gap. Technically, we employ drug-drug similarity and target-target similarity as additional information to mitigate the scarcity of interactions. Besides, we trained MGDTI via meta-learning to be adaptive to cold-start tasks. Moreover, we employed graph transformer to prevent over-smoothing by capturing long-range dependencies. Extensive results on the benchmark dataset demonstrate that MGDTI is effective on DTI prediction under cold-start scenarios.</p>","PeriodicalId":390,"journal":{"name":"Methods","volume":" ","pages":"10-20"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring drug-target interaction prediction on cold-start scenarios via meta-learning-based graph transformer.\",\"authors\":\"Chengxin He, Zhenjiang Zhao, Xinye Wang, Huiru Zheng, Lei Duan, Jie Zuo\",\"doi\":\"10.1016/j.ymeth.2024.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting drug-target interaction (DTI) is of great importance for drug discovery and development. With the rapid development of biological and chemical technologies, computational methods for DTI prediction are becoming a promising approach. However, there are few solutions to the cold-start problem in DTI prediction scenarios, as these methods rely on existing interaction information to support their modeling. Consequently, they are unable to effectively predict DTIs for new drugs or targets with limited interaction data in the existing work. To this end, we propose a graph transformer method based on meta-learning named MGDTI (short for Meta-learning-based Graph Transformer for Drug-Target Interaction prediction) to fill this gap. Technically, we employ drug-drug similarity and target-target similarity as additional information to mitigate the scarcity of interactions. Besides, we trained MGDTI via meta-learning to be adaptive to cold-start tasks. Moreover, we employed graph transformer to prevent over-smoothing by capturing long-range dependencies. Extensive results on the benchmark dataset demonstrate that MGDTI is effective on DTI prediction under cold-start scenarios.</p>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\" \",\"pages\":\"10-20\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymeth.2024.11.010\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymeth.2024.11.010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring drug-target interaction prediction on cold-start scenarios via meta-learning-based graph transformer.
Predicting drug-target interaction (DTI) is of great importance for drug discovery and development. With the rapid development of biological and chemical technologies, computational methods for DTI prediction are becoming a promising approach. However, there are few solutions to the cold-start problem in DTI prediction scenarios, as these methods rely on existing interaction information to support their modeling. Consequently, they are unable to effectively predict DTIs for new drugs or targets with limited interaction data in the existing work. To this end, we propose a graph transformer method based on meta-learning named MGDTI (short for Meta-learning-based Graph Transformer for Drug-Target Interaction prediction) to fill this gap. Technically, we employ drug-drug similarity and target-target similarity as additional information to mitigate the scarcity of interactions. Besides, we trained MGDTI via meta-learning to be adaptive to cold-start tasks. Moreover, we employed graph transformer to prevent over-smoothing by capturing long-range dependencies. Extensive results on the benchmark dataset demonstrate that MGDTI is effective on DTI prediction under cold-start scenarios.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.