产前接触双酚 AF 后幼年雌性小鼠乳腺发育改变和促肿瘤变化

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Xiaotong Ji , Jiande Li , Weiwei Wang , Peilin Li , Haoyang Wu , Linzhuo Shen , Lihong Su , Peiyun Jiang , Yating Li , Xiaoyun Wu , Yuchai Tian , Yu Liu , Huifeng Yue
{"title":"产前接触双酚 AF 后幼年雌性小鼠乳腺发育改变和促肿瘤变化","authors":"Xiaotong Ji ,&nbsp;Jiande Li ,&nbsp;Weiwei Wang ,&nbsp;Peilin Li ,&nbsp;Haoyang Wu ,&nbsp;Linzhuo Shen ,&nbsp;Lihong Su ,&nbsp;Peiyun Jiang ,&nbsp;Yating Li ,&nbsp;Xiaoyun Wu ,&nbsp;Yuchai Tian ,&nbsp;Yu Liu ,&nbsp;Huifeng Yue","doi":"10.1016/j.envres.2024.120371","DOIUrl":null,"url":null,"abstract":"<div><div>Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring. Differentially expressed genes exhibiting time series patterns induced by BPAF exposure were enriched in biological processes related to mammary gland development, epithelial cell proliferation and so on. Notably, 13 breast cancer-related biomarkers including <em>Pgr</em>, <em>Gata3</em>, <em>Egfr</em> and <em>Areg</em> were screened, showing a time-dependent increase in expression. After human homologous gene transformation, TCGA analysis suggested that the human homologues of genes differentially expressed in BPAF-treated mice were associated with increased tumor stages in female patients with breast cancer. Furthermore, postnatal cross-fostering did not completely restore the adverse effects of prenatal BPAF exposure and even showed a reverse tendency. These results imply that prenatal BPAF exposure <em>in utero</em> and postnatally nursing by BPAF exposed dams, have long-term effects on the mammary glands health of female offspring.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120371"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altered mammary gland development and pro-tumorigenic changes in young female mice following prenatal BPAF exposure\",\"authors\":\"Xiaotong Ji ,&nbsp;Jiande Li ,&nbsp;Weiwei Wang ,&nbsp;Peilin Li ,&nbsp;Haoyang Wu ,&nbsp;Linzhuo Shen ,&nbsp;Lihong Su ,&nbsp;Peiyun Jiang ,&nbsp;Yating Li ,&nbsp;Xiaoyun Wu ,&nbsp;Yuchai Tian ,&nbsp;Yu Liu ,&nbsp;Huifeng Yue\",\"doi\":\"10.1016/j.envres.2024.120371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring. Differentially expressed genes exhibiting time series patterns induced by BPAF exposure were enriched in biological processes related to mammary gland development, epithelial cell proliferation and so on. Notably, 13 breast cancer-related biomarkers including <em>Pgr</em>, <em>Gata3</em>, <em>Egfr</em> and <em>Areg</em> were screened, showing a time-dependent increase in expression. After human homologous gene transformation, TCGA analysis suggested that the human homologues of genes differentially expressed in BPAF-treated mice were associated with increased tumor stages in female patients with breast cancer. Furthermore, postnatal cross-fostering did not completely restore the adverse effects of prenatal BPAF exposure and even showed a reverse tendency. These results imply that prenatal BPAF exposure <em>in utero</em> and postnatally nursing by BPAF exposed dams, have long-term effects on the mammary glands health of female offspring.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"264 \",\"pages\":\"Article 120371\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124022783\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124022783","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于双酚 A(BPA)具有干扰内分泌的作用,目前正被逐步淘汰,并越来越多地被双酚 AF(BPAF)等替代化合物所取代。本研究旨在探讨产前接触双酚 AF 和产后交叉抚育对后代乳腺发育和长期健康影响的潜在不良后果。结果表明,产前暴露于双酚 AF 会加速青春期的到来,并诱导雌性后代乳腺导管扩张、血管生成、乳腺小叶增生和炎症细胞浸润增强。双酚 AF 暴露所诱导的差异表达基因在乳腺发育、上皮细胞增殖等相关生物过程中表现出时间序列模式。值得注意的是,筛选出的包括 Pgr、Gata3、Egfr 和 Areg 在内的 13 个乳腺癌相关生物标志物的表达呈时间依赖性增加。经过人类同源基因转化后,TCGA 分析表明,在 BPAF 处理的小鼠中差异表达的人类同源基因与女性乳腺癌患者肿瘤分期的增加有关。此外,产后交叉培育并不能完全恢复产前双酚 AF 暴露的不良影响,甚至会出现相反的趋势。这些结果表明,产前在子宫内暴露于双酚 AF 和产后由暴露于双酚 AF 的母鼠哺乳,会对雌性后代的乳腺健康产生长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Altered mammary gland development and pro-tumorigenic changes in young female mice following prenatal BPAF exposure

Altered mammary gland development and pro-tumorigenic changes in young female mice following prenatal BPAF exposure
Bisphenol A (BPA) is being phased out owing to its endocrine-disrupting effects and is increasingly being replaced by its substitute compounds such as bisphenol AF (BPAF). This study aims to explore the potential adverse outcomes of prenatal BPAF exposure combined with postnatal cross-fostering on the development and long-term health effects of the mammary gland in offspring. The results suggested that prenatal BPAF exposure accelerates the puberty, and induces duct dilatations, angiogenesis, lobular hyperplasia, and enhanced inflammatory cell infiltration in the mammary gland of female offspring. Differentially expressed genes exhibiting time series patterns induced by BPAF exposure were enriched in biological processes related to mammary gland development, epithelial cell proliferation and so on. Notably, 13 breast cancer-related biomarkers including Pgr, Gata3, Egfr and Areg were screened, showing a time-dependent increase in expression. After human homologous gene transformation, TCGA analysis suggested that the human homologues of genes differentially expressed in BPAF-treated mice were associated with increased tumor stages in female patients with breast cancer. Furthermore, postnatal cross-fostering did not completely restore the adverse effects of prenatal BPAF exposure and even showed a reverse tendency. These results imply that prenatal BPAF exposure in utero and postnatally nursing by BPAF exposed dams, have long-term effects on the mammary glands health of female offspring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信