{"title":"将酶的特性转化为分子二氧化碳还原催化剂。","authors":"Matthias Huber, Corinna R. Hess","doi":"10.1016/j.cbpa.2024.102540","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon monoxide dehydrogenases and formate dehydrogenases efficiently catalyze the reduction of CO<sub>2</sub>. In both enzymes, CO<sub>2</sub> activation at the metal active site is assisted by proximate amino acids and Fe–S-clusters. Functional features of the enzyme are mimicked in molecular catalysts by redox-active ligands, acidic and charged groups in the ligand periphery, and binuclear scaffolds. These components have all improved the catalytic performance of synthetic systems. Recent studies impart a deeper understanding of the individual contributions of the various functionalities to reactivity and of their combined effects. New catalyst platforms reveal alternate pathways for CO<sub>2</sub> reduction, unique intermediates, and strategies for switching selectivity. Design of a wider array of complexes that combine different functional elements is encouraged to further optimize catalysts for CO<sub>2</sub> reduction, especially for product formation beyond CO. More diverse bimetallic catalysts are needed to better exploit metal–metal interactions for CO<sub>2</sub> conversion.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102540"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transferring enzyme features to molecular CO2 reduction catalysts\",\"authors\":\"Matthias Huber, Corinna R. Hess\",\"doi\":\"10.1016/j.cbpa.2024.102540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon monoxide dehydrogenases and formate dehydrogenases efficiently catalyze the reduction of CO<sub>2</sub>. In both enzymes, CO<sub>2</sub> activation at the metal active site is assisted by proximate amino acids and Fe–S-clusters. Functional features of the enzyme are mimicked in molecular catalysts by redox-active ligands, acidic and charged groups in the ligand periphery, and binuclear scaffolds. These components have all improved the catalytic performance of synthetic systems. Recent studies impart a deeper understanding of the individual contributions of the various functionalities to reactivity and of their combined effects. New catalyst platforms reveal alternate pathways for CO<sub>2</sub> reduction, unique intermediates, and strategies for switching selectivity. Design of a wider array of complexes that combine different functional elements is encouraged to further optimize catalysts for CO<sub>2</sub> reduction, especially for product formation beyond CO. More diverse bimetallic catalysts are needed to better exploit metal–metal interactions for CO<sub>2</sub> conversion.</div></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"83 \",\"pages\":\"Article 102540\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124001169\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124001169","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transferring enzyme features to molecular CO2 reduction catalysts
Carbon monoxide dehydrogenases and formate dehydrogenases efficiently catalyze the reduction of CO2. In both enzymes, CO2 activation at the metal active site is assisted by proximate amino acids and Fe–S-clusters. Functional features of the enzyme are mimicked in molecular catalysts by redox-active ligands, acidic and charged groups in the ligand periphery, and binuclear scaffolds. These components have all improved the catalytic performance of synthetic systems. Recent studies impart a deeper understanding of the individual contributions of the various functionalities to reactivity and of their combined effects. New catalyst platforms reveal alternate pathways for CO2 reduction, unique intermediates, and strategies for switching selectivity. Design of a wider array of complexes that combine different functional elements is encouraged to further optimize catalysts for CO2 reduction, especially for product formation beyond CO. More diverse bimetallic catalysts are needed to better exploit metal–metal interactions for CO2 conversion.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.