Julien Capin, Emile Chabert, Ana Zuñiga, Jerome Bonnet
{"title":"用于诊断、监测和流行病学的微生物生物传感器:今天的成就和明天的前景。","authors":"Julien Capin, Emile Chabert, Ana Zuñiga, Jerome Bonnet","doi":"10.1111/1751-7915.70047","DOIUrl":null,"url":null,"abstract":"<p>Microbial biosensors hold great promise for engineering high-performance, field-deployable and affordable detection devices for medical and environmental applications. This review explores recent advances in the field, highlighting new sensing strategies and modalities for whole-cell biosensors as well as the remarkable expansion of microbial cell-free systems. We also discuss improvements in robustness that have enhanced the ability of biosensors to withstand the challenging conditions found in biological samples. However, limitations remain in expanding the detection repertoire, particularly for proteins. We anticipate that the AI-powered revolution in protein design will streamline the engineering of custom-made sensing modules and unlock the full potential of microbial biosensors.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568237/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbial biosensors for diagnostics, surveillance and epidemiology: Today's achievements and tomorrow's prospects\",\"authors\":\"Julien Capin, Emile Chabert, Ana Zuñiga, Jerome Bonnet\",\"doi\":\"10.1111/1751-7915.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbial biosensors hold great promise for engineering high-performance, field-deployable and affordable detection devices for medical and environmental applications. This review explores recent advances in the field, highlighting new sensing strategies and modalities for whole-cell biosensors as well as the remarkable expansion of microbial cell-free systems. We also discuss improvements in robustness that have enhanced the ability of biosensors to withstand the challenging conditions found in biological samples. However, limitations remain in expanding the detection repertoire, particularly for proteins. We anticipate that the AI-powered revolution in protein design will streamline the engineering of custom-made sensing modules and unlock the full potential of microbial biosensors.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70047\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70047","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microbial biosensors for diagnostics, surveillance and epidemiology: Today's achievements and tomorrow's prospects
Microbial biosensors hold great promise for engineering high-performance, field-deployable and affordable detection devices for medical and environmental applications. This review explores recent advances in the field, highlighting new sensing strategies and modalities for whole-cell biosensors as well as the remarkable expansion of microbial cell-free systems. We also discuss improvements in robustness that have enhanced the ability of biosensors to withstand the challenging conditions found in biological samples. However, limitations remain in expanding the detection repertoire, particularly for proteins. We anticipate that the AI-powered revolution in protein design will streamline the engineering of custom-made sensing modules and unlock the full potential of microbial biosensors.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes