酒石酸溶液中阴极活性材料前驱体的结晶。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-11-16 DOI:10.1002/cssc.202401523
Chunyan Ma, Mona Mohamoud, Tiaan Punt, Jinlong Li, Michael Svärd, Kerstin Forsberg
{"title":"酒石酸溶液中阴极活性材料前驱体的结晶。","authors":"Chunyan Ma, Mona Mohamoud, Tiaan Punt, Jinlong Li, Michael Svärd, Kerstin Forsberg","doi":"10.1002/cssc.202401523","DOIUrl":null,"url":null,"abstract":"<p><p>In this study L-(+)-tartaric acid was used to extract metals from either pure cathode material (NMC111) or black mass from spent lithium-ion batteries. The leaching efficiencies of Li, Co, Ni, and Mn from NMC111 are > 87% at 70 °C, with an initial solid to liquid ratio of 17, and > 72.4±1.0% from black mass under corresponding conditions. The metals tend to form mixed phases in antisolvent crystallization and seeding has a minimal effect on the final solid composition. Impurities influence both crystal nucleation and growth. By controlling the antisolvent addition rate crystal growth can be promoted. The theoretical dielectric constant of the solution is shown to correlate excellently to the recovery efficiency across different antisolvents, where a value <52 results in over 95% total transition metal recovery efficiency. The correlation can be a powerful tool for quantitative prediction of optimal solvent composition for effective antisolvent crystallization.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401523"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization of Cathode Active Material Precursors from Tartaric Acid Solution.\",\"authors\":\"Chunyan Ma, Mona Mohamoud, Tiaan Punt, Jinlong Li, Michael Svärd, Kerstin Forsberg\",\"doi\":\"10.1002/cssc.202401523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study L-(+)-tartaric acid was used to extract metals from either pure cathode material (NMC111) or black mass from spent lithium-ion batteries. The leaching efficiencies of Li, Co, Ni, and Mn from NMC111 are > 87% at 70 °C, with an initial solid to liquid ratio of 17, and > 72.4±1.0% from black mass under corresponding conditions. The metals tend to form mixed phases in antisolvent crystallization and seeding has a minimal effect on the final solid composition. Impurities influence both crystal nucleation and growth. By controlling the antisolvent addition rate crystal growth can be promoted. The theoretical dielectric constant of the solution is shown to correlate excellently to the recovery efficiency across different antisolvents, where a value <52 results in over 95% total transition metal recovery efficiency. The correlation can be a powerful tool for quantitative prediction of optimal solvent composition for effective antisolvent crystallization.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401523\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401523\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401523","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用 L-(+)- 酒石酸从纯正极材料(NMC111)或废锂离子电池黑液中提取金属。在 70 °C、初始固液比为 17 的条件下,从 NMC111 中萃取锂、钴、镍和锰的效率大于 87%;在相应条件下,从黑液中萃取锂、钴、镍和锰的效率大于 72.4±1.0%。金属倾向于在反溶剂结晶过程中形成混合相,播种对最终固体成分的影响很小。杂质对晶体成核和生长都有影响。通过控制反溶剂添加速率可以促进晶体生长。研究表明,溶液的理论介电常数与不同反溶剂的回收效率有很好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystallization of Cathode Active Material Precursors from Tartaric Acid Solution.

In this study L-(+)-tartaric acid was used to extract metals from either pure cathode material (NMC111) or black mass from spent lithium-ion batteries. The leaching efficiencies of Li, Co, Ni, and Mn from NMC111 are > 87% at 70 °C, with an initial solid to liquid ratio of 17, and > 72.4±1.0% from black mass under corresponding conditions. The metals tend to form mixed phases in antisolvent crystallization and seeding has a minimal effect on the final solid composition. Impurities influence both crystal nucleation and growth. By controlling the antisolvent addition rate crystal growth can be promoted. The theoretical dielectric constant of the solution is shown to correlate excellently to the recovery efficiency across different antisolvents, where a value <52 results in over 95% total transition metal recovery efficiency. The correlation can be a powerful tool for quantitative prediction of optimal solvent composition for effective antisolvent crystallization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信