Kehinde S Olaniyi, Stephanie E Areloegbe, Olabimpe C Badejogbin, Isaac O Ajadi, Mary B Ajadi
{"title":"丁酸盐介导的副氧合酶-1调节可缓解多囊卵巢综合征大鼠模型中的心肾代谢异常。","authors":"Kehinde S Olaniyi, Stephanie E Areloegbe, Olabimpe C Badejogbin, Isaac O Ajadi, Mary B Ajadi","doi":"10.1007/s10557-024-07649-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Polycystic ovarian syndrome (PCOS) has been associated with cardiovascular risks and comorbid pathologies, particularly cardiorenal disorder. Short-chain fatty acids (SCFAs), especially butyrate, are essential fatty acids that regulate metabolic health and ameliorate granulosa inflammation in PCOS. However, the effect of butyrate on cardiorenal damage associated with PCOS is unknown. This study investigated the impact of SCFA and butyrate on cardiorenal abnormalities in PCOS rat model and the probable involvement of paraoxonase-1 (PON-1).</p><p><strong>Methods: </strong>Eight-week-old female Wistar rats were allotted into three groups, n = 5, namely control (CTL), PCOS (LEZ), and LEZ + BUT. Induction of PCOS with letrozole (1 mg/kg) lasted for 21 days, while treatment with butyrate (200 mg/kg) commenced after the induction and lasted for 6 weeks uninterruptedly.</p><p><strong>Results: </strong>PCOS rats showed hyperandrogenism, multiple ovarian cysts, disrupted metabolic indices (fasting insulin and homeostatic model of insulin resistance), and increased (p < 0.05) plasma troponin T, urea, and creatinine, as well as increased cardiac/renal stroma cell-derived factor-1/caspase-6, malondialdehyde/nuclear factor-kappaB, transforming growth factor-β1, and renal ϒ-glutamyl transferase, while a significant decrease (p < 0.05) in systemic nitric oxide/endothelial nitric oxide synthase and cardiac/renal hypoxia-inducible factor-1α and nuclear factor erythroid 2-related factor 2, which were accompanied with a decreased level of PON-1. These systemic and cardiorenal derangements were reversed by butyrate administration.</p><p><strong>Conclusions: </strong>The results demonstrate the therapeutic benefits of SCFAs, butyrate, against cardiorenometabolic disorder in a model of PCOS. This beneficial effect is accompanied by an elevated level of PON-1. The present data possibly provides a preclinical relevance for the management of cardiorenal syndrome in PCOS.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Butyrate-Mediated Modulation of Paraoxonase-1 Alleviates Cardiorenometabolic Abnormalities in a Rat Model of Polycystic Ovarian Syndrome.\",\"authors\":\"Kehinde S Olaniyi, Stephanie E Areloegbe, Olabimpe C Badejogbin, Isaac O Ajadi, Mary B Ajadi\",\"doi\":\"10.1007/s10557-024-07649-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Polycystic ovarian syndrome (PCOS) has been associated with cardiovascular risks and comorbid pathologies, particularly cardiorenal disorder. Short-chain fatty acids (SCFAs), especially butyrate, are essential fatty acids that regulate metabolic health and ameliorate granulosa inflammation in PCOS. However, the effect of butyrate on cardiorenal damage associated with PCOS is unknown. This study investigated the impact of SCFA and butyrate on cardiorenal abnormalities in PCOS rat model and the probable involvement of paraoxonase-1 (PON-1).</p><p><strong>Methods: </strong>Eight-week-old female Wistar rats were allotted into three groups, n = 5, namely control (CTL), PCOS (LEZ), and LEZ + BUT. Induction of PCOS with letrozole (1 mg/kg) lasted for 21 days, while treatment with butyrate (200 mg/kg) commenced after the induction and lasted for 6 weeks uninterruptedly.</p><p><strong>Results: </strong>PCOS rats showed hyperandrogenism, multiple ovarian cysts, disrupted metabolic indices (fasting insulin and homeostatic model of insulin resistance), and increased (p < 0.05) plasma troponin T, urea, and creatinine, as well as increased cardiac/renal stroma cell-derived factor-1/caspase-6, malondialdehyde/nuclear factor-kappaB, transforming growth factor-β1, and renal ϒ-glutamyl transferase, while a significant decrease (p < 0.05) in systemic nitric oxide/endothelial nitric oxide synthase and cardiac/renal hypoxia-inducible factor-1α and nuclear factor erythroid 2-related factor 2, which were accompanied with a decreased level of PON-1. These systemic and cardiorenal derangements were reversed by butyrate administration.</p><p><strong>Conclusions: </strong>The results demonstrate the therapeutic benefits of SCFAs, butyrate, against cardiorenometabolic disorder in a model of PCOS. This beneficial effect is accompanied by an elevated level of PON-1. The present data possibly provides a preclinical relevance for the management of cardiorenal syndrome in PCOS.</p>\",\"PeriodicalId\":9557,\"journal\":{\"name\":\"Cardiovascular Drugs and Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Drugs and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10557-024-07649-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07649-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Butyrate-Mediated Modulation of Paraoxonase-1 Alleviates Cardiorenometabolic Abnormalities in a Rat Model of Polycystic Ovarian Syndrome.
Purpose: Polycystic ovarian syndrome (PCOS) has been associated with cardiovascular risks and comorbid pathologies, particularly cardiorenal disorder. Short-chain fatty acids (SCFAs), especially butyrate, are essential fatty acids that regulate metabolic health and ameliorate granulosa inflammation in PCOS. However, the effect of butyrate on cardiorenal damage associated with PCOS is unknown. This study investigated the impact of SCFA and butyrate on cardiorenal abnormalities in PCOS rat model and the probable involvement of paraoxonase-1 (PON-1).
Methods: Eight-week-old female Wistar rats were allotted into three groups, n = 5, namely control (CTL), PCOS (LEZ), and LEZ + BUT. Induction of PCOS with letrozole (1 mg/kg) lasted for 21 days, while treatment with butyrate (200 mg/kg) commenced after the induction and lasted for 6 weeks uninterruptedly.
Results: PCOS rats showed hyperandrogenism, multiple ovarian cysts, disrupted metabolic indices (fasting insulin and homeostatic model of insulin resistance), and increased (p < 0.05) plasma troponin T, urea, and creatinine, as well as increased cardiac/renal stroma cell-derived factor-1/caspase-6, malondialdehyde/nuclear factor-kappaB, transforming growth factor-β1, and renal ϒ-glutamyl transferase, while a significant decrease (p < 0.05) in systemic nitric oxide/endothelial nitric oxide synthase and cardiac/renal hypoxia-inducible factor-1α and nuclear factor erythroid 2-related factor 2, which were accompanied with a decreased level of PON-1. These systemic and cardiorenal derangements were reversed by butyrate administration.
Conclusions: The results demonstrate the therapeutic benefits of SCFAs, butyrate, against cardiorenometabolic disorder in a model of PCOS. This beneficial effect is accompanied by an elevated level of PON-1. The present data possibly provides a preclinical relevance for the management of cardiorenal syndrome in PCOS.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.