{"title":"在正常和低蛋白水平日粮中添加烟酰胺对生长育肥猪免疫力、抗氧化剂和肠道微生物群的影响。","authors":"Tianyi Lan, Meiya Cai, Sishen Wang, Yingying Lu, Zhiru Tang, Qingsong Tang, Jingchun Gao, Yetong Xu, Xie Peng, Zhihong Sun","doi":"10.1016/j.jnutbio.2024.109809","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effects of nicotinamide (NAM) applied to diets with different crude protein levels on immune function, antioxidant capacity, and intestinal flora in growing-finishing pigs. Forty barrows (37.0 ± 1.0 kg) were randomly allocated to one of four dietary treatments (n = 10 per group). The diets in the two phases consisted of a basal diet with 30 mg/kg NAM, a basal diet with 360 mg/kg NAM, a low-protein diet with 30 mg/kg NAM, and a low-protein diet with 360 mg/kg NAM. The results showed that dietary addition of 360 mg/kg NAM decreased IL-12, malondialdehyde, IgG and IgM contents in the plasma and increased total superoxide dismutase activity and total antioxidant capacity in the colonic mucosa (P < 0.05). Supplementing the diet with 360 mg/kg NAM increased mRNA expression of the nucleotide-binding oligomerization domain containing 2 and nuclear factor erythroid 2-related factor 2 and protein expression of nuclear factor kappa-B and toll-like receptor 4 in the colonic mucosa (P < 0.05). The concentrations of acetic acid and butyric acid in the colonic contents and the abundance of Actinobacteriota in the colon at the phylum level were significantly decreased by feeding low-protein diets (P < 0.05). Additionally, the addition of 360 mg/kg NAM to diets increased (P < 0.05) the Sobs, Ace, and Chao indices of colonic microorganisms in pigs. Overall, the rational use of NAM can improve inflammatory status, enhance antioxidant capacity and intestinal barrier function, and increase colonic microbial diversity in growing-finishing pigs.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109809"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of adding niacinamide to diets with normal and low protein levels on the immunity, antioxidant, and intestinal microbiota in growing-finishing pigs.\",\"authors\":\"Tianyi Lan, Meiya Cai, Sishen Wang, Yingying Lu, Zhiru Tang, Qingsong Tang, Jingchun Gao, Yetong Xu, Xie Peng, Zhihong Sun\",\"doi\":\"10.1016/j.jnutbio.2024.109809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the effects of nicotinamide (NAM) applied to diets with different crude protein levels on immune function, antioxidant capacity, and intestinal flora in growing-finishing pigs. Forty barrows (37.0 ± 1.0 kg) were randomly allocated to one of four dietary treatments (n = 10 per group). The diets in the two phases consisted of a basal diet with 30 mg/kg NAM, a basal diet with 360 mg/kg NAM, a low-protein diet with 30 mg/kg NAM, and a low-protein diet with 360 mg/kg NAM. The results showed that dietary addition of 360 mg/kg NAM decreased IL-12, malondialdehyde, IgG and IgM contents in the plasma and increased total superoxide dismutase activity and total antioxidant capacity in the colonic mucosa (P < 0.05). Supplementing the diet with 360 mg/kg NAM increased mRNA expression of the nucleotide-binding oligomerization domain containing 2 and nuclear factor erythroid 2-related factor 2 and protein expression of nuclear factor kappa-B and toll-like receptor 4 in the colonic mucosa (P < 0.05). The concentrations of acetic acid and butyric acid in the colonic contents and the abundance of Actinobacteriota in the colon at the phylum level were significantly decreased by feeding low-protein diets (P < 0.05). Additionally, the addition of 360 mg/kg NAM to diets increased (P < 0.05) the Sobs, Ace, and Chao indices of colonic microorganisms in pigs. Overall, the rational use of NAM can improve inflammatory status, enhance antioxidant capacity and intestinal barrier function, and increase colonic microbial diversity in growing-finishing pigs.</p>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\" \",\"pages\":\"109809\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnutbio.2024.109809\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2024.109809","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of adding niacinamide to diets with normal and low protein levels on the immunity, antioxidant, and intestinal microbiota in growing-finishing pigs.
This study aimed to investigate the effects of nicotinamide (NAM) applied to diets with different crude protein levels on immune function, antioxidant capacity, and intestinal flora in growing-finishing pigs. Forty barrows (37.0 ± 1.0 kg) were randomly allocated to one of four dietary treatments (n = 10 per group). The diets in the two phases consisted of a basal diet with 30 mg/kg NAM, a basal diet with 360 mg/kg NAM, a low-protein diet with 30 mg/kg NAM, and a low-protein diet with 360 mg/kg NAM. The results showed that dietary addition of 360 mg/kg NAM decreased IL-12, malondialdehyde, IgG and IgM contents in the plasma and increased total superoxide dismutase activity and total antioxidant capacity in the colonic mucosa (P < 0.05). Supplementing the diet with 360 mg/kg NAM increased mRNA expression of the nucleotide-binding oligomerization domain containing 2 and nuclear factor erythroid 2-related factor 2 and protein expression of nuclear factor kappa-B and toll-like receptor 4 in the colonic mucosa (P < 0.05). The concentrations of acetic acid and butyric acid in the colonic contents and the abundance of Actinobacteriota in the colon at the phylum level were significantly decreased by feeding low-protein diets (P < 0.05). Additionally, the addition of 360 mg/kg NAM to diets increased (P < 0.05) the Sobs, Ace, and Chao indices of colonic microorganisms in pigs. Overall, the rational use of NAM can improve inflammatory status, enhance antioxidant capacity and intestinal barrier function, and increase colonic microbial diversity in growing-finishing pigs.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.