Shunyao Luan , Yongshuo Ji , Yumei Liu , Linling Zhu , Hong Zhao , Haoyu Zhou , Ke Li , Weizhen Zhu , Benpeng Zhu
{"title":"用于深部器官 HIFU 治疗的人工智能超声波测温仪。","authors":"Shunyao Luan , Yongshuo Ji , Yumei Liu , Linling Zhu , Hong Zhao , Haoyu Zhou , Ke Li , Weizhen Zhu , Benpeng Zhu","doi":"10.1016/j.ultsonch.2024.107154","DOIUrl":null,"url":null,"abstract":"<div><div>High-intensity focused ultrasound (HIFU) is considered as an important non-invasive way for tumor ablation in deep organs. However, accurate real-time monitoring of the temperature field within HIFU focal area remains a challenge. Although ultrasound technology, compared with other approaches, is a good choice for noninvasive and real-time monitoring on the temperature distribution, traditional ultrasonic thermometry mainly relies on the backscattered signal, which is difficult for high temperature (>50 °C) measurement. Given that artificial intelligence (AI) shows significant potential for biomedical applications, we propose an AI-powered ultrasonic thermometry using an end-to-end deep neural network termed Breath-guided Multimodal Teacher-Student (BMTS), which possesses the capability to elucidate the interaction between HIFU and complex heterogeneous biological media. It has been demonstrated experimentally that two-dimension temperature distribution within HIFU focal area in deep organ can be accurately reconstructed with an average error and a frame speed of 0.8 °C and 0.37 s, respectively. Most importantly, the maximum measurable temperature for ultrasonic technology has been successfully expanded to a record value of 67 °C. This breakthrough indicates that the development of AI-powered ultrasonic thermometry is beneficial for precise HIFU therapy planning in the future.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107154"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-powered ultrasonic thermometry for HIFU therapy in deep organ\",\"authors\":\"Shunyao Luan , Yongshuo Ji , Yumei Liu , Linling Zhu , Hong Zhao , Haoyu Zhou , Ke Li , Weizhen Zhu , Benpeng Zhu\",\"doi\":\"10.1016/j.ultsonch.2024.107154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-intensity focused ultrasound (HIFU) is considered as an important non-invasive way for tumor ablation in deep organs. However, accurate real-time monitoring of the temperature field within HIFU focal area remains a challenge. Although ultrasound technology, compared with other approaches, is a good choice for noninvasive and real-time monitoring on the temperature distribution, traditional ultrasonic thermometry mainly relies on the backscattered signal, which is difficult for high temperature (>50 °C) measurement. Given that artificial intelligence (AI) shows significant potential for biomedical applications, we propose an AI-powered ultrasonic thermometry using an end-to-end deep neural network termed Breath-guided Multimodal Teacher-Student (BMTS), which possesses the capability to elucidate the interaction between HIFU and complex heterogeneous biological media. It has been demonstrated experimentally that two-dimension temperature distribution within HIFU focal area in deep organ can be accurately reconstructed with an average error and a frame speed of 0.8 °C and 0.37 s, respectively. Most importantly, the maximum measurable temperature for ultrasonic technology has been successfully expanded to a record value of 67 °C. This breakthrough indicates that the development of AI-powered ultrasonic thermometry is beneficial for precise HIFU therapy planning in the future.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"111 \",\"pages\":\"Article 107154\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724004036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724004036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
AI-powered ultrasonic thermometry for HIFU therapy in deep organ
High-intensity focused ultrasound (HIFU) is considered as an important non-invasive way for tumor ablation in deep organs. However, accurate real-time monitoring of the temperature field within HIFU focal area remains a challenge. Although ultrasound technology, compared with other approaches, is a good choice for noninvasive and real-time monitoring on the temperature distribution, traditional ultrasonic thermometry mainly relies on the backscattered signal, which is difficult for high temperature (>50 °C) measurement. Given that artificial intelligence (AI) shows significant potential for biomedical applications, we propose an AI-powered ultrasonic thermometry using an end-to-end deep neural network termed Breath-guided Multimodal Teacher-Student (BMTS), which possesses the capability to elucidate the interaction between HIFU and complex heterogeneous biological media. It has been demonstrated experimentally that two-dimension temperature distribution within HIFU focal area in deep organ can be accurately reconstructed with an average error and a frame speed of 0.8 °C and 0.37 s, respectively. Most importantly, the maximum measurable temperature for ultrasonic technology has been successfully expanded to a record value of 67 °C. This breakthrough indicates that the development of AI-powered ultrasonic thermometry is beneficial for precise HIFU therapy planning in the future.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.