利用 NH2SO3H 焙烧工艺从磷酸铁锂电池废液中提取金属的非等温动力学研究

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL
Zhenning Liu , Zhenan Jin , Linlin Tong , Jiangping Huang , Tenghao Yang
{"title":"利用 NH2SO3H 焙烧工艺从磷酸铁锂电池废液中提取金属的非等温动力学研究","authors":"Zhenning Liu ,&nbsp;Zhenan Jin ,&nbsp;Linlin Tong ,&nbsp;Jiangping Huang ,&nbsp;Tenghao Yang","doi":"10.1016/j.psep.2024.11.043","DOIUrl":null,"url":null,"abstract":"<div><div>The non-isothermal kinetics of retired lithium iron phosphate (LiFePO<sub>4</sub>) battery powder and amino sulfonic acid (NH<sub>2</sub>SO<sub>3</sub>H) roasting were studied using TG-DSC. The results show that there are three stages of weight loss: loss of adsorbed water, decomposition and reaction of NH<sub>2</sub>SO<sub>3</sub>H (stage Ⅱ), and formation and growth of Li and Fe sulfate nuclei (stage Ⅲ). The apparent activation energy (E) and pre-exponential factor (ln(A)) of NH<sub>2</sub>SO<sub>3</sub>H decomposition and reaction were 159.85 kJ/mol and 32.02 S<sup>−1</sup>, respectively. Similarly, the apparent E and ln(A) formed by Li and Fe sulfate were 113.89 kJ/mol and 11.55 S<sup>−1</sup>, respectively. Furthermore, the formation of new phases in the second stage reaction is controlled by nucleation and growth. The nucleation and growth of Li and Fe sulfates in the third stage not only occur at this stage, but their rates are also controlled by diffusion. The dynamic equations for the second and third stages are as follows:</div><div><span><math><mrow><mo>[</mo><msup><mrow><mo>−</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></mrow></math></span>=8.06<span><math><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>exp(-<span><math><mfrac><mrow><mn>1.60</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow><mrow><mi>RT</mi></mrow></mfrac></math></span>)t</div><div><span><math><mrow><mo>[</mo><msup><mrow><mo>−</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mo>]</mo></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></mrow></math></span>=1.04<span><math><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>exp(-<span><math><mfrac><mrow><mn>1.14</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow><mrow><mi>RT</mi></mrow></mfrac></math></span>)t</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"193 ","pages":"Pages 87-94"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-isothermal kinetic study on the extraction of metals from spent lithium iron phosphate batteries using the NH2SO3H roasting process\",\"authors\":\"Zhenning Liu ,&nbsp;Zhenan Jin ,&nbsp;Linlin Tong ,&nbsp;Jiangping Huang ,&nbsp;Tenghao Yang\",\"doi\":\"10.1016/j.psep.2024.11.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The non-isothermal kinetics of retired lithium iron phosphate (LiFePO<sub>4</sub>) battery powder and amino sulfonic acid (NH<sub>2</sub>SO<sub>3</sub>H) roasting were studied using TG-DSC. The results show that there are three stages of weight loss: loss of adsorbed water, decomposition and reaction of NH<sub>2</sub>SO<sub>3</sub>H (stage Ⅱ), and formation and growth of Li and Fe sulfate nuclei (stage Ⅲ). The apparent activation energy (E) and pre-exponential factor (ln(A)) of NH<sub>2</sub>SO<sub>3</sub>H decomposition and reaction were 159.85 kJ/mol and 32.02 S<sup>−1</sup>, respectively. Similarly, the apparent E and ln(A) formed by Li and Fe sulfate were 113.89 kJ/mol and 11.55 S<sup>−1</sup>, respectively. Furthermore, the formation of new phases in the second stage reaction is controlled by nucleation and growth. The nucleation and growth of Li and Fe sulfates in the third stage not only occur at this stage, but their rates are also controlled by diffusion. The dynamic equations for the second and third stages are as follows:</div><div><span><math><mrow><mo>[</mo><msup><mrow><mo>−</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></mrow></math></span>=8.06<span><math><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>exp(-<span><math><mfrac><mrow><mn>1.60</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow><mrow><mi>RT</mi></mrow></mfrac></math></span>)t</div><div><span><math><mrow><mo>[</mo><msup><mrow><mo>−</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mo>]</mo></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></mrow></math></span>=1.04<span><math><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>exp(-<span><math><mfrac><mrow><mn>1.14</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow><mrow><mi>RT</mi></mrow></mfrac></math></span>)t</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"193 \",\"pages\":\"Pages 87-94\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024014563\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024014563","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用 TG-DSC 研究了退役磷酸铁锂(LiFePO4)电池粉和氨基磺酸(NH2SO3H)焙烧的非等温动力学。结果表明,重量损失分为三个阶段:吸附水的损失、NH2SO3H 的分解和反应(第Ⅱ阶段)、硫酸锂和硫酸铁核的形成和生长(第Ⅲ阶段)。NH2SO3H 分解和反应的表观活化能(E)和前指数(ln(A))分别为 159.85 kJ/mol 和 32.02 S-1。同样,硫酸锂和硫酸铁形成的表观 E 和 ln(A) 分别为 113.89 kJ/mol 和 11.55 S-1。此外,第二阶段反应中新相的形成受成核和生长的控制。硫酸锂和硫酸铁在第三阶段的成核和生长不仅发生在这一阶段,而且其速率也受扩散控制。第二和第三阶段的动态方程如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-isothermal kinetic study on the extraction of metals from spent lithium iron phosphate batteries using the NH2SO3H roasting process
The non-isothermal kinetics of retired lithium iron phosphate (LiFePO4) battery powder and amino sulfonic acid (NH2SO3H) roasting were studied using TG-DSC. The results show that there are three stages of weight loss: loss of adsorbed water, decomposition and reaction of NH2SO3H (stage Ⅱ), and formation and growth of Li and Fe sulfate nuclei (stage Ⅲ). The apparent activation energy (E) and pre-exponential factor (ln(A)) of NH2SO3H decomposition and reaction were 159.85 kJ/mol and 32.02 S−1, respectively. Similarly, the apparent E and ln(A) formed by Li and Fe sulfate were 113.89 kJ/mol and 11.55 S−1, respectively. Furthermore, the formation of new phases in the second stage reaction is controlled by nucleation and growth. The nucleation and growth of Li and Fe sulfates in the third stage not only occur at this stage, but their rates are also controlled by diffusion. The dynamic equations for the second and third stages are as follows:
[ln(1α)]13=8.06×1013exp(-1.60×105RT)t
[ln(1α)]23=1.04×105exp(-1.14×105RT)t
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信