{"title":"通过连续双缩合反应制备 1,3-二芳基亚甲基吡唑酮的稳健有机催化三组分方法","authors":"Ashvani K. Patel, Sampak Samanta","doi":"10.1021/acs.joc.4c02273","DOIUrl":null,"url":null,"abstract":"A robust pyrrolidine-BzOH salt-catalyzed one-pot three-component reaction involving 4-unsubstituted pyrazolones, aryl/heteroarylaldehydes, and aryl methyl ketones is reported for the first time. This catalytic process fortifies an efficient method, allowing for the practical synthesis of a wide array of synthetically useful 1,3-diarylallylidene pyrazolones in good to high yields exclusively in their single geometrical isomer forms. Furthermore, this catalyst facilitates a sequential double condensation reaction under thermal conditions, thereby enabling two consecutive C═C bonds through displacement of aryl groups. Moreover, this organocatalytic technique achieves a 100% carbon atom economy, marking a significant step forward toward efficient and sustainable synthesis.","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":"62 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Organocatalytic Three-Component Approach to 1,3-Diarylallylidene Pyrazolones via Consecutive Double Condensation Reactions\",\"authors\":\"Ashvani K. Patel, Sampak Samanta\",\"doi\":\"10.1021/acs.joc.4c02273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust pyrrolidine-BzOH salt-catalyzed one-pot three-component reaction involving 4-unsubstituted pyrazolones, aryl/heteroarylaldehydes, and aryl methyl ketones is reported for the first time. This catalytic process fortifies an efficient method, allowing for the practical synthesis of a wide array of synthetically useful 1,3-diarylallylidene pyrazolones in good to high yields exclusively in their single geometrical isomer forms. Furthermore, this catalyst facilitates a sequential double condensation reaction under thermal conditions, thereby enabling two consecutive C═C bonds through displacement of aryl groups. Moreover, this organocatalytic technique achieves a 100% carbon atom economy, marking a significant step forward toward efficient and sustainable synthesis.\",\"PeriodicalId\":57,\"journal\":{\"name\":\"The Journal of Organic Chemistry\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.joc.4c02273\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02273","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Robust Organocatalytic Three-Component Approach to 1,3-Diarylallylidene Pyrazolones via Consecutive Double Condensation Reactions
A robust pyrrolidine-BzOH salt-catalyzed one-pot three-component reaction involving 4-unsubstituted pyrazolones, aryl/heteroarylaldehydes, and aryl methyl ketones is reported for the first time. This catalytic process fortifies an efficient method, allowing for the practical synthesis of a wide array of synthetically useful 1,3-diarylallylidene pyrazolones in good to high yields exclusively in their single geometrical isomer forms. Furthermore, this catalyst facilitates a sequential double condensation reaction under thermal conditions, thereby enabling two consecutive C═C bonds through displacement of aryl groups. Moreover, this organocatalytic technique achieves a 100% carbon atom economy, marking a significant step forward toward efficient and sustainable synthesis.
期刊介绍:
The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.