多溶剂诱导梯度聚合生成超强、坚韧、可拉伸和抗疲劳的木质素基超分子水凝胶

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yihui Gu, Wenjuan Wu, Chaofeng Zhang, Xinrui Li, Xinyu Guo, Yilin Wang, Yufeng Yuan, Bo Jiang, Yongcan Jin
{"title":"多溶剂诱导梯度聚合生成超强、坚韧、可拉伸和抗疲劳的木质素基超分子水凝胶","authors":"Yihui Gu, Wenjuan Wu, Chaofeng Zhang, Xinrui Li, Xinyu Guo, Yilin Wang, Yufeng Yuan, Bo Jiang, Yongcan Jin","doi":"10.1002/adfm.202417206","DOIUrl":null,"url":null,"abstract":"A hydrogel that is expected as a biomedical load‐bearing material remains a substantial challenge. In this work, a multi‐solvent‐induced gradient aggregation state strategy is developed to construct lignin‐based supramolecular hydrogels that feature superstrong, tough, stretchable, and fatigue‐resistant properties. The multi‐solvent high‐temperature annealing induces the gradient crystallization of polyvinyl alcohol and the self‐assembly of lignin. The interior strong hydrogen‐binding and the external weak non‐covalent‐binding forms a gradient aggregation state microstructure and compact macrostructure, where lignin acts as an interfacial molecular bridge. By sharing interconnection points to collaboratively dissipate energy, the developed hydrogels demonstrate high modulus (74.4 MPa), toughness (90 MJ m<jats:sup>−3</jats:sup>), tear (34,000 J m<jats:sup>−2</jats:sup>), tensile (24.8 MPa), and compressive strength (60 MPa). Moreover, such lignin‐based supramolecular hydrogels also exhibit extraordinary fatigue resistance, biocompatibility, and reactive oxygen species scavenging activity. This gradient non‐covalent conjoined‐network caused by multi‐solvent high‐temperature annealing provides a new design strategy and potential for developing biomaterials that mimic biomedical load‐bearing materials (e.g., natural tendons and ligaments).","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi‐Solvent‐Induced Gradient Aggregation Rendered Superstrong, Tough, Stretchable, and Fatigue‐Resistant Lignin‐Based Supramolecular Hydrogels\",\"authors\":\"Yihui Gu, Wenjuan Wu, Chaofeng Zhang, Xinrui Li, Xinyu Guo, Yilin Wang, Yufeng Yuan, Bo Jiang, Yongcan Jin\",\"doi\":\"10.1002/adfm.202417206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hydrogel that is expected as a biomedical load‐bearing material remains a substantial challenge. In this work, a multi‐solvent‐induced gradient aggregation state strategy is developed to construct lignin‐based supramolecular hydrogels that feature superstrong, tough, stretchable, and fatigue‐resistant properties. The multi‐solvent high‐temperature annealing induces the gradient crystallization of polyvinyl alcohol and the self‐assembly of lignin. The interior strong hydrogen‐binding and the external weak non‐covalent‐binding forms a gradient aggregation state microstructure and compact macrostructure, where lignin acts as an interfacial molecular bridge. By sharing interconnection points to collaboratively dissipate energy, the developed hydrogels demonstrate high modulus (74.4 MPa), toughness (90 MJ m<jats:sup>−3</jats:sup>), tear (34,000 J m<jats:sup>−2</jats:sup>), tensile (24.8 MPa), and compressive strength (60 MPa). Moreover, such lignin‐based supramolecular hydrogels also exhibit extraordinary fatigue resistance, biocompatibility, and reactive oxygen species scavenging activity. This gradient non‐covalent conjoined‐network caused by multi‐solvent high‐temperature annealing provides a new design strategy and potential for developing biomaterials that mimic biomedical load‐bearing materials (e.g., natural tendons and ligaments).\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202417206\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417206","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种有望成为生物医学承重材料的水凝胶仍然是一项巨大的挑战。本研究开发了一种多溶剂诱导梯度聚集态策略,用于构建木质素基超分子水凝胶,这种水凝胶具有超强、坚韧、可拉伸和抗疲劳的特性。多溶剂高温退火诱导了聚乙烯醇的梯度结晶和木质素的自组装。内部的强氢结合和外部的弱非共价结合形成了梯度聚集态的微观结构和紧密的宏观结构,其中木质素起到了界面分子桥的作用。通过共享互连点协同消散能量,所开发的水凝胶具有高模量(74.4 兆帕)、韧性(90 兆焦耳/立方米)、撕裂强度(34,000 焦耳/立方米)、拉伸强度(24.8 兆帕)和压缩强度(60 兆帕)。此外,这种基于木质素的超分子水凝胶还表现出非凡的抗疲劳性、生物相容性和活性氧清除活性。多溶剂高温退火所产生的这种梯度非共价连接网络为开发模拟生物医学承重材料(如天然肌腱和韧带)的生物材料提供了一种新的设计策略和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi‐Solvent‐Induced Gradient Aggregation Rendered Superstrong, Tough, Stretchable, and Fatigue‐Resistant Lignin‐Based Supramolecular Hydrogels
A hydrogel that is expected as a biomedical load‐bearing material remains a substantial challenge. In this work, a multi‐solvent‐induced gradient aggregation state strategy is developed to construct lignin‐based supramolecular hydrogels that feature superstrong, tough, stretchable, and fatigue‐resistant properties. The multi‐solvent high‐temperature annealing induces the gradient crystallization of polyvinyl alcohol and the self‐assembly of lignin. The interior strong hydrogen‐binding and the external weak non‐covalent‐binding forms a gradient aggregation state microstructure and compact macrostructure, where lignin acts as an interfacial molecular bridge. By sharing interconnection points to collaboratively dissipate energy, the developed hydrogels demonstrate high modulus (74.4 MPa), toughness (90 MJ m−3), tear (34,000 J m−2), tensile (24.8 MPa), and compressive strength (60 MPa). Moreover, such lignin‐based supramolecular hydrogels also exhibit extraordinary fatigue resistance, biocompatibility, and reactive oxygen species scavenging activity. This gradient non‐covalent conjoined‐network caused by multi‐solvent high‐temperature annealing provides a new design strategy and potential for developing biomaterials that mimic biomedical load‐bearing materials (e.g., natural tendons and ligaments).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信