Yiwei Sun, Wei Zhang, Zhiwen Luo, Can Zhu, Yiqun Zhang, Zheng Shu, Cailiang Shen, Xiaxi Yao, Yuanyin Wang, Xianwen Wang
{"title":"具有多酶特性的 ZnO-CuS/F127 水凝胶可通过抑制细菌精氨酸合成和促进组织修复来治疗与种植体有关的感染","authors":"Yiwei Sun, Wei Zhang, Zhiwen Luo, Can Zhu, Yiqun Zhang, Zheng Shu, Cailiang Shen, Xiaxi Yao, Yuanyin Wang, Xianwen Wang","doi":"10.1002/adfm.202415778","DOIUrl":null,"url":null,"abstract":"Implant‐related infections are characterized by the formation of bacterial biofilms. Current treatments have various drawbacks. Nanozymes with enzyme‐like activity can produce highly toxic substances to kill bacteria and remove biofilms without inducing drug resistance. However, it is difficult for current monometallic nanozymes to function well in complex biofilm environments. Therefore, the development of multimetallic nanozymes with efficient multienzyme activities is crucial. In the present study, bimetallic nanozyme, ZnO‐CuS nanoflowers with peroxidase (POD), glutathione oxidase (GSH‐Px), and catalase (CAT) activity are successfully synthesized via calcination and loaded into F127 hydrogels for the treatment of implant‐related infections. The ability of ZnO‐CuS nanoflowers to bind bacteria is key for efficient antimicrobial activity. In addition, ZnO‐CuS nanoflowers with H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> disrupt the metabolism of <jats:italic>MRSA</jats:italic>, including arginine synthesis, nucleotide excision repair, energy metabolism, and protein synthesis. ZnO‐CuS/F127 hydrogel in combination with H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> has been demonstrated to be effective in clearing biofilm infection and facilitating the switch of M1 macrophages to M2‐repairative phenotype macrophages for the treatment of implant infections in mice. Furthermore, ZnO‐CuS/F127 hydrogels have favorable biosafety, and their toxicity is negligible. ZnO‐CuS/F127 hydrogel has provided a promising biomedical strategy for the healing of implant‐related infections, highlighting the potential of bimetallic nanozymes for clinical applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"25 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnO‐CuS/F127 Hydrogels with Multienzyme Properties for Implant‐Related Infection Therapy by Inhibiting Bacterial Arginine Biosynthesis and Promoting Tissue Repair\",\"authors\":\"Yiwei Sun, Wei Zhang, Zhiwen Luo, Can Zhu, Yiqun Zhang, Zheng Shu, Cailiang Shen, Xiaxi Yao, Yuanyin Wang, Xianwen Wang\",\"doi\":\"10.1002/adfm.202415778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implant‐related infections are characterized by the formation of bacterial biofilms. Current treatments have various drawbacks. Nanozymes with enzyme‐like activity can produce highly toxic substances to kill bacteria and remove biofilms without inducing drug resistance. However, it is difficult for current monometallic nanozymes to function well in complex biofilm environments. Therefore, the development of multimetallic nanozymes with efficient multienzyme activities is crucial. In the present study, bimetallic nanozyme, ZnO‐CuS nanoflowers with peroxidase (POD), glutathione oxidase (GSH‐Px), and catalase (CAT) activity are successfully synthesized via calcination and loaded into F127 hydrogels for the treatment of implant‐related infections. The ability of ZnO‐CuS nanoflowers to bind bacteria is key for efficient antimicrobial activity. In addition, ZnO‐CuS nanoflowers with H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> disrupt the metabolism of <jats:italic>MRSA</jats:italic>, including arginine synthesis, nucleotide excision repair, energy metabolism, and protein synthesis. ZnO‐CuS/F127 hydrogel in combination with H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> has been demonstrated to be effective in clearing biofilm infection and facilitating the switch of M1 macrophages to M2‐repairative phenotype macrophages for the treatment of implant infections in mice. Furthermore, ZnO‐CuS/F127 hydrogels have favorable biosafety, and their toxicity is negligible. ZnO‐CuS/F127 hydrogel has provided a promising biomedical strategy for the healing of implant‐related infections, highlighting the potential of bimetallic nanozymes for clinical applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202415778\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415778","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
ZnO‐CuS/F127 Hydrogels with Multienzyme Properties for Implant‐Related Infection Therapy by Inhibiting Bacterial Arginine Biosynthesis and Promoting Tissue Repair
Implant‐related infections are characterized by the formation of bacterial biofilms. Current treatments have various drawbacks. Nanozymes with enzyme‐like activity can produce highly toxic substances to kill bacteria and remove biofilms without inducing drug resistance. However, it is difficult for current monometallic nanozymes to function well in complex biofilm environments. Therefore, the development of multimetallic nanozymes with efficient multienzyme activities is crucial. In the present study, bimetallic nanozyme, ZnO‐CuS nanoflowers with peroxidase (POD), glutathione oxidase (GSH‐Px), and catalase (CAT) activity are successfully synthesized via calcination and loaded into F127 hydrogels for the treatment of implant‐related infections. The ability of ZnO‐CuS nanoflowers to bind bacteria is key for efficient antimicrobial activity. In addition, ZnO‐CuS nanoflowers with H2O2 disrupt the metabolism of MRSA, including arginine synthesis, nucleotide excision repair, energy metabolism, and protein synthesis. ZnO‐CuS/F127 hydrogel in combination with H2O2 has been demonstrated to be effective in clearing biofilm infection and facilitating the switch of M1 macrophages to M2‐repairative phenotype macrophages for the treatment of implant infections in mice. Furthermore, ZnO‐CuS/F127 hydrogels have favorable biosafety, and their toxicity is negligible. ZnO‐CuS/F127 hydrogel has provided a promising biomedical strategy for the healing of implant‐related infections, highlighting the potential of bimetallic nanozymes for clinical applications.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.