基于刀片涂层宽带隙 FAC 的过磷酸盐的结晶控制

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Ge, Zixuan Huang, Biao Shi, Pengyang Wang, Zhen Liu, You Gao, Xiaona Du, Ying Zhao, Xiaodan Zhang
{"title":"基于刀片涂层宽带隙 FAC 的过磷酸盐的结晶控制","authors":"Xin Ge, Zixuan Huang, Biao Shi, Pengyang Wang, Zhen Liu, You Gao, Xiaona Du, Ying Zhao, Xiaodan Zhang","doi":"10.1002/adfm.202417493","DOIUrl":null,"url":null,"abstract":"Transforming perovskite solar cells into commercial production requires advanced scalable deposition technology. However, the deposition of high-quality perovskite thin films using the blade coating method presents challenges, especially in controlling the nucleation and crystallization of perovskite. In this work, an effective approach is proposed for controlling nucleation and crystallization by simultaneously incorporating two kinds of ionic liquid, namely 1H-imidazole acetate (IMAc), and 1-buty-3-methylimidazolium tetrafluoroborate (BMIMBF<sub>4</sub>), into the precursor solution. This innovative strategy initiates <i>π</i>–<i>π</i> interactions between IM and BMIM cations, thereby enhancing the interaction between cations and the Pb-I framework. The competitive mechanism of interaction with Pb-I framework effectively suppresses the formation of unfavorable mesophase, thereby enabling a single crystallization pathway from NMP + PbI<sub>2</sub> to α-perovskite. Consequently, this method effectively reduces defects and enhances the crystal quality of α-perovskite film. Based on this strategy, the power conversion efficiency of the p-i-n wide bandgap perovskite device prepared by the blade coating method, is increased to 21.31%, representing one of the highest efficiencies achieved with this technology for 1.68 eV bandgap FACs-based perovskites. Thus, this approach emerges as a feasible breakthrough strategy that may unleash the full potential of perovskite solar cells.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization Control of Blade-Coated Wide Bandgap FACs-Based Perovskite\",\"authors\":\"Xin Ge, Zixuan Huang, Biao Shi, Pengyang Wang, Zhen Liu, You Gao, Xiaona Du, Ying Zhao, Xiaodan Zhang\",\"doi\":\"10.1002/adfm.202417493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transforming perovskite solar cells into commercial production requires advanced scalable deposition technology. However, the deposition of high-quality perovskite thin films using the blade coating method presents challenges, especially in controlling the nucleation and crystallization of perovskite. In this work, an effective approach is proposed for controlling nucleation and crystallization by simultaneously incorporating two kinds of ionic liquid, namely 1H-imidazole acetate (IMAc), and 1-buty-3-methylimidazolium tetrafluoroborate (BMIMBF<sub>4</sub>), into the precursor solution. This innovative strategy initiates <i>π</i>–<i>π</i> interactions between IM and BMIM cations, thereby enhancing the interaction between cations and the Pb-I framework. The competitive mechanism of interaction with Pb-I framework effectively suppresses the formation of unfavorable mesophase, thereby enabling a single crystallization pathway from NMP + PbI<sub>2</sub> to α-perovskite. Consequently, this method effectively reduces defects and enhances the crystal quality of α-perovskite film. Based on this strategy, the power conversion efficiency of the p-i-n wide bandgap perovskite device prepared by the blade coating method, is increased to 21.31%, representing one of the highest efficiencies achieved with this technology for 1.68 eV bandgap FACs-based perovskites. Thus, this approach emerges as a feasible breakthrough strategy that may unleash the full potential of perovskite solar cells.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202417493\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要将过氧化物太阳能电池投入商业生产,需要先进的可扩展沉积技术。然而,使用叶片镀膜法沉积高质量的包晶体薄膜面临着挑战,尤其是在控制包晶体的成核和结晶方面。本研究提出了一种控制成核和结晶的有效方法,即在前驱体溶液中同时加入两种离子液体,即 1H-imidazole acetate (IMAc) 和 1-buty-3-methylimidazolium tetrafluoroborate (BMIMBF4)。这种创新策略启动了 IM 和 BMIM 阳离子之间的 π-π 相互作用,从而增强了阳离子与 Pb-I 框架之间的相互作用。与 Pb-I 框架相互作用的竞争机制有效地抑制了不利介相的形成,从而实现了从 NMP + PbI2 到 α-perovskite 的单一结晶途径。因此,这种方法能有效减少缺陷,提高 α-perovskite 薄膜的晶体质量。基于这种策略,用叶片镀膜法制备的 pi-n 宽带隙过氧化物器件的功率转换效率提高到了 21.31%,这代表了用这种技术制备 1.68 eV 带隙 FACs 基过氧化物的最高效率之一。因此,这种方法是一种可行的突破性战略,可以充分释放出包晶石太阳能电池的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystallization Control of Blade-Coated Wide Bandgap FACs-Based Perovskite

Crystallization Control of Blade-Coated Wide Bandgap FACs-Based Perovskite
Transforming perovskite solar cells into commercial production requires advanced scalable deposition technology. However, the deposition of high-quality perovskite thin films using the blade coating method presents challenges, especially in controlling the nucleation and crystallization of perovskite. In this work, an effective approach is proposed for controlling nucleation and crystallization by simultaneously incorporating two kinds of ionic liquid, namely 1H-imidazole acetate (IMAc), and 1-buty-3-methylimidazolium tetrafluoroborate (BMIMBF4), into the precursor solution. This innovative strategy initiates ππ interactions between IM and BMIM cations, thereby enhancing the interaction between cations and the Pb-I framework. The competitive mechanism of interaction with Pb-I framework effectively suppresses the formation of unfavorable mesophase, thereby enabling a single crystallization pathway from NMP + PbI2 to α-perovskite. Consequently, this method effectively reduces defects and enhances the crystal quality of α-perovskite film. Based on this strategy, the power conversion efficiency of the p-i-n wide bandgap perovskite device prepared by the blade coating method, is increased to 21.31%, representing one of the highest efficiencies achieved with this technology for 1.68 eV bandgap FACs-based perovskites. Thus, this approach emerges as a feasible breakthrough strategy that may unleash the full potential of perovskite solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信