ZnO-SnO2 气体传感器的甲醛气体响应和选择性

IF 8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jaebum Park , Deepak Chaulagain , Noel Ngando Same , Abdulfatai Olatunji Yakub , Jeong Ok Lim , Jong Wook Roh , Jeung Soo Huh
{"title":"ZnO-SnO2 气体传感器的甲醛气体响应和选择性","authors":"Jaebum Park ,&nbsp;Deepak Chaulagain ,&nbsp;Noel Ngando Same ,&nbsp;Abdulfatai Olatunji Yakub ,&nbsp;Jeong Ok Lim ,&nbsp;Jong Wook Roh ,&nbsp;Jeung Soo Huh","doi":"10.1016/j.snb.2024.136958","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to develop a gas sensor based on a ZnO-SnO<sub>2</sub> nanocomposite fabricated via ultrasonic chemical synthesis and to evaluate its ability to detect formaldehyde gas. The response, recovery, and selectivity of a series of sensors employing ZnO-SnO<sub>2</sub> nanocomposite samples produced using various synthesis energy levels were systematically evaluated. The experimental results revealed that the sensor using the ZnO-SnO<sub>2</sub> nanocomposite fabricated with a synthesis energy of 100,000 J produced the strongest response to formaldehyde gas and the fastest recovery time. It also demonstrated excellent selectivity when compared to toluene gas. These findings suggest that the use of an optimal synthesis energy can enhance the surface characteristics of ZnO-SnO<sub>2</sub> nanocomposites, thus improving their sensing performance.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"425 ","pages":"Article 136958"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formaldehyde gas response and selectivity of ZnO-SnO2 gas sensors\",\"authors\":\"Jaebum Park ,&nbsp;Deepak Chaulagain ,&nbsp;Noel Ngando Same ,&nbsp;Abdulfatai Olatunji Yakub ,&nbsp;Jeong Ok Lim ,&nbsp;Jong Wook Roh ,&nbsp;Jeung Soo Huh\",\"doi\":\"10.1016/j.snb.2024.136958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to develop a gas sensor based on a ZnO-SnO<sub>2</sub> nanocomposite fabricated via ultrasonic chemical synthesis and to evaluate its ability to detect formaldehyde gas. The response, recovery, and selectivity of a series of sensors employing ZnO-SnO<sub>2</sub> nanocomposite samples produced using various synthesis energy levels were systematically evaluated. The experimental results revealed that the sensor using the ZnO-SnO<sub>2</sub> nanocomposite fabricated with a synthesis energy of 100,000 J produced the strongest response to formaldehyde gas and the fastest recovery time. It also demonstrated excellent selectivity when compared to toluene gas. These findings suggest that the use of an optimal synthesis energy can enhance the surface characteristics of ZnO-SnO<sub>2</sub> nanocomposites, thus improving their sensing performance.</div></div>\",\"PeriodicalId\":425,\"journal\":{\"name\":\"Sensors and Actuators B: Chemical\",\"volume\":\"425 \",\"pages\":\"Article 136958\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators B: Chemical\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925400524016885\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400524016885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种基于通过超声化学合成法制造的 ZnO-SnO2 纳米复合材料的气体传感器,并评估其检测甲醛气体的能力。研究系统地评估了采用不同合成能级的 ZnO-SnO2 纳米复合材料样品制成的一系列传感器的响应、回收率和选择性。实验结果表明,使用合成能量为 100,000 J 的 ZnO-SnO2 纳米复合材料制作的传感器对甲醛气体的响应最强,恢复时间最快。与甲苯气体相比,它还表现出卓越的选择性。这些研究结果表明,使用最佳合成能量可以增强 ZnO-SnO2 纳米复合材料的表面特性,从而提高其传感性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formaldehyde gas response and selectivity of ZnO-SnO2 gas sensors
This study aimed to develop a gas sensor based on a ZnO-SnO2 nanocomposite fabricated via ultrasonic chemical synthesis and to evaluate its ability to detect formaldehyde gas. The response, recovery, and selectivity of a series of sensors employing ZnO-SnO2 nanocomposite samples produced using various synthesis energy levels were systematically evaluated. The experimental results revealed that the sensor using the ZnO-SnO2 nanocomposite fabricated with a synthesis energy of 100,000 J produced the strongest response to formaldehyde gas and the fastest recovery time. It also demonstrated excellent selectivity when compared to toluene gas. These findings suggest that the use of an optimal synthesis energy can enhance the surface characteristics of ZnO-SnO2 nanocomposites, thus improving their sensing performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信