用于稳定和高能量密度 Zn-I2 电池的 MXene 调制器支持高负载碘复合阴极

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dandan Li, Ying‐Jie Zhu, Long Cheng, Sida Xie, Han‐Ping Yu, Wei Zhang, Zhenming Xu, Ming‐Guo Ma, Heng Li
{"title":"用于稳定和高能量密度 Zn-I2 电池的 MXene 调制器支持高负载碘复合阴极","authors":"Dandan Li, Ying‐Jie Zhu, Long Cheng, Sida Xie, Han‐Ping Yu, Wei Zhang, Zhenming Xu, Ming‐Guo Ma, Heng Li","doi":"10.1002/aenm.202404426","DOIUrl":null,"url":null,"abstract":"Achieving both high iodine loading cathode and high Zn anode depth of discharge (DOD) is pivotal to unlocking the full potential of energy‐dense Zn‐I<jats:sub>2</jats:sub> batteries. However, this combination exacerbates the detrimental shuttle effect of polyiodide intermediates, significantly impairing the battery's reversibility and stability. Herein, this study reports an advanced high‐loading iodine cathode (denoted as MX‐AB@I) enabled by a multifunctional Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> MXene modulator, which presents high stability and energy density in Zn‐I<jats:sub>2</jats:sub> batteries. Through comprehensive experimental and theoretical analyses, the intrinsic regulating mechanisms are elucidated by which the MXene modulator effectively suppresses polyiodide shuttling, enhances iodine conversion kinetics, and dramatically improves Zn anode reversibility. With the aid of the MXene modulator, the MX‐AB@I composite cathode achieves a high iodine mass loading of 23 mg cm<jats:sup>−2</jats:sup> and realizes a practically high areal capacity of 4.0 mAh cm<jats:sup>−2</jats:sup>. When paired with a thin Zn anode (10 µm), this configuration realizes a high Zn DOD of 78.7% and a high energy density of 171.3 Wh kg<jats:sup>−1</jats:sup>, surpassing the majority of Zn‐I<jats:sub>2</jats:sub> battery systems reported in the literature. This study presents an effective approach to designing high‐loading iodine cathodes for Zn‐I<jats:sub>2</jats:sub> batteries by leveraging MXene modulators to regulate critical electrochemical reaction processes.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MXene Modulator Enabled High‐Loading Iodine Composite Cathode for Stable and High‐Energy‐Density Zn‐I2 Battery\",\"authors\":\"Dandan Li, Ying‐Jie Zhu, Long Cheng, Sida Xie, Han‐Ping Yu, Wei Zhang, Zhenming Xu, Ming‐Guo Ma, Heng Li\",\"doi\":\"10.1002/aenm.202404426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving both high iodine loading cathode and high Zn anode depth of discharge (DOD) is pivotal to unlocking the full potential of energy‐dense Zn‐I<jats:sub>2</jats:sub> batteries. However, this combination exacerbates the detrimental shuttle effect of polyiodide intermediates, significantly impairing the battery's reversibility and stability. Herein, this study reports an advanced high‐loading iodine cathode (denoted as MX‐AB@I) enabled by a multifunctional Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> MXene modulator, which presents high stability and energy density in Zn‐I<jats:sub>2</jats:sub> batteries. Through comprehensive experimental and theoretical analyses, the intrinsic regulating mechanisms are elucidated by which the MXene modulator effectively suppresses polyiodide shuttling, enhances iodine conversion kinetics, and dramatically improves Zn anode reversibility. With the aid of the MXene modulator, the MX‐AB@I composite cathode achieves a high iodine mass loading of 23 mg cm<jats:sup>−2</jats:sup> and realizes a practically high areal capacity of 4.0 mAh cm<jats:sup>−2</jats:sup>. When paired with a thin Zn anode (10 µm), this configuration realizes a high Zn DOD of 78.7% and a high energy density of 171.3 Wh kg<jats:sup>−1</jats:sup>, surpassing the majority of Zn‐I<jats:sub>2</jats:sub> battery systems reported in the literature. This study presents an effective approach to designing high‐loading iodine cathodes for Zn‐I<jats:sub>2</jats:sub> batteries by leveraging MXene modulators to regulate critical electrochemical reaction processes.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202404426\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404426","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实现高碘负载阴极和高锌阳极放电深度(DOD)对于充分释放高能量 Zn-I2 电池的潜力至关重要。然而,这种组合加剧了多碘化物中间体的有害穿梭效应,严重损害了电池的可逆性和稳定性。在此,本研究报告了一种由多功能 Ti3C2Tx MXene 调制器促成的先进的高负载碘阴极(称为 MX-AB@I),它在 Zn-I2 电池中具有高稳定性和高能量密度。通过全面的实验和理论分析,阐明了 MXene 调制剂有效抑制多碘化物穿梭、提高碘转化动力学和显著改善锌阳极可逆性的内在调节机制。在 MXene 调制器的帮助下,MX-AB@I 复合阴极实现了 23 mg cm-2 的高碘质量负载,并实现了 4.0 mAh cm-2 的实际高面积容量。当与薄锌阳极(10 微米)配对时,这种配置实现了 78.7% 的高锌 DOD 和 171.3 Wh kg-1 的高能量密度,超过了文献中报道的大多数 Zn-I2 电池系统。通过利用 MXene 调制器调节关键的电化学反应过程,本研究提出了一种为 Zn-I2 电池设计高负载碘阴极的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A MXene Modulator Enabled High‐Loading Iodine Composite Cathode for Stable and High‐Energy‐Density Zn‐I2 Battery
Achieving both high iodine loading cathode and high Zn anode depth of discharge (DOD) is pivotal to unlocking the full potential of energy‐dense Zn‐I2 batteries. However, this combination exacerbates the detrimental shuttle effect of polyiodide intermediates, significantly impairing the battery's reversibility and stability. Herein, this study reports an advanced high‐loading iodine cathode (denoted as MX‐AB@I) enabled by a multifunctional Ti3C2Tx MXene modulator, which presents high stability and energy density in Zn‐I2 batteries. Through comprehensive experimental and theoretical analyses, the intrinsic regulating mechanisms are elucidated by which the MXene modulator effectively suppresses polyiodide shuttling, enhances iodine conversion kinetics, and dramatically improves Zn anode reversibility. With the aid of the MXene modulator, the MX‐AB@I composite cathode achieves a high iodine mass loading of 23 mg cm−2 and realizes a practically high areal capacity of 4.0 mAh cm−2. When paired with a thin Zn anode (10 µm), this configuration realizes a high Zn DOD of 78.7% and a high energy density of 171.3 Wh kg−1, surpassing the majority of Zn‐I2 battery systems reported in the literature. This study presents an effective approach to designing high‐loading iodine cathodes for Zn‐I2 batteries by leveraging MXene modulators to regulate critical electrochemical reaction processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信